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Chapter 1
Vibrations

Dandelion. Cello. Read those two words, and your brain instantly
conjures a stream of associations, the most prominent of which have
to do with vibrations. Our mental category of “dandelion-ness” is
strongly linked to the color of light waves that vibrate about half a
million billion times a second: yellow. The velvety throb of a cello
has as its most obvious characteristic a relatively low musical pitch
— the note you are spontaneously imagining right now might be
one whose sound vibrations repeat at a rate of a hundred times a
second.

Evolution has designed our two most important senses around
the assumption that not only will our environment be drenched with
information-bearing vibrations, but in addition those vibrations will
often be repetitive, so that we can judge colors and pitches by the
rate of repetition. Granting that we do sometimes encounter non-
repeating waves such as the consonant “sh,” which has no recogniz-
able pitch, why was Nature’s assumption of repetition nevertheless
so right in general?

Repeating phenomena occur throughout nature, from the orbits
of electrons in atoms to the reappearance of Halley’s Comet every 75
years. Ancient cultures tended to attribute repetitious phenomena

The vibrations of this electric bass
string are converted to electrical
vibrations, then to sound vibra-
tions, and finally to vibrations of
our eardrums.

13
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a/lf we try to draw a non-
repeating orbit for Halley’s
Comet, it will inevitably end up
crossing itself.

10
11

12

13

b/A spring has an equilib-
rium length, 1, and can be
stretched, 2, or compressed, 3. A
mass attached to the spring can
be set into motion initially, 4, and
will then vibrate, 4-13.

like the seasons to the cyclical nature of time itself, but we now
have a less mystical explanation. Suppose that instead of Halley’s
Comet’s true, repeating elliptical orbit that closes seamlessly upon
itself with each revolution, we decide to take a pen and draw a
whimsical alternative path that never repeats. We will not be able to
draw for very long without having the path cross itself. But at such
a crossing point, the comet has returned to a place it visited once
before, and since its potential energy is the same as it was on the
last visit, conservation of energy proves that it must again have the
same kinetic energy and therefore the same speed. Not only that,
but the comet’s direction of motion cannot be randomly chosen,
because angular momentum must be conserved as well. Although
this falls short of being an ironclad proof that the comet’s orbit must
repeat, it no longer seems surprising that it does.

Conservation laws, then, provide us with a good reason why
repetitive motion is so prevalent in the universe. But it goes deeper
than that. Up to this point in your study of physics, I have been
indoctrinating you with a mechanistic vision of the universe as a
giant piece of clockwork. Breaking the clockwork down into smaller
and smaller bits, we end up at the atomic level, where the electrons
circling the nucleus resemble — well, little clocks! From this point
of view, particles of matter are the fundamental building blocks
of everything, and vibrations and waves are just a couple of the
tricks that groups of particles can do. But at the beginning of
the 20th century, the tabled were turned. A chain of discoveries
initiated by Albert Einstein led to the realization that the so-called
subatomic “particles” were in fact waves. In this new world-view,
it is vibrations and waves that are fundamental, and the formation
of matter is just one of the tricks that waves can do.

1.1 Period, Frequency, and Amplitude

Figure b shows our most basic example of a vibration. With no
forces on it, the spring assumes its equilibrium length, b/1. It can
be stretched, 2, or compressed, 3. We attach the spring to a wall
on the left and to a mass on the right. If we now hit the mass with
a hammer, 4, it oscillates as shown in the series of snapshots, 4-13.
If we assume that the mass slides back and forth without friction
and that the motion is one-dimensional, then conservation of energy
proves that the motion must be repetitive. When the block comes
back to its initial position again, 7, its potential energy is the same
again, so it must have the same kinetic energy again. The motion
is in the opposite direction, however. Finally, at 10, it returns to its
initial position with the same kinetic energy and the same direction
of motion. The motion has gone through one complete cycle, and
will now repeat forever in the absence of friction.

The usual physics terminology for motion that repeats itself over

14 Chapter 1 Vibrations



and over is periodic motion, and the time required for one repetition
is called the period, T. (The symbol P is not used because of the
possible confusion with momentum.) One complete repetition of the
motion is called a cycle.

We are used to referring to short-period sound vibrations as
“high” in pitch, and it sounds odd to have to say that high pitches
have low periods. It is therefore more common to discuss the rapid-
ity of a vibration in terms of the number of vibrations per second,
a quantity called the frequency, f. Since the period is the number
of seconds per cycle and the frequency is the number of cycles per
second, they are reciprocals of each other,

f=1/T

A carnival game example 1
In the carnival game shown in figure c, the rube is supposed to
push the bowling ball on the track just hard enough so that it goes
over the hump and into the valley, but does not come back out ¢/ Example 1.
again. If the only types of energy involved are kinetic and poten-

tial, this is impossible. Suppose you expect the ball to come back

to a point such as the one shown with the dashed outline, then

stop and turn around. It would already have passed through this

point once before, going to the left on its way into the valley. It

was moving then, so conservation of energy tells us that it can-

not be at rest when it comes back to the same point. The motion

that the customer hopes for is physically impossible. There is

a physically possible periodic motion in which the ball rolls back

and forth, staying confined within the valley, but there is no way

to get the ball into that motion beginning from the place where we

start. There is a way to beat the game, though. If you put enough

spin on the ball, you can create enough kinetic friction so that a

significant amount of heat is generated. Conservation of energy

then allows the ball to be at rest when it comes back to a point

like the outlined one, because kinetic energy has been converted

into heat.

Period and frequency of a fly’s wing-beats example 2
A Victorian parlor trick was to listen to the pitch of a fly’s buzz, re-
produce the musical note on the piano, and announce how many
times the fly’s wings had flapped in one second. If the fly’s wings
flap, say, 200 times in one second, then the frequency of their
motion is f = 200/1 s = 200 s~'. The period is one 200th of a
second, T =1/f=(1/200) s = 0.005 s.

Section 1.1 Period, Frequency, and Amplitude 15



d/1. The amplitude of the
vibrations of the mass on a spring
could be defined in two different
ways. It would have units of
distance. 2. The amplitude of a
swinging pendulum would more
naturally be defined as an angle.

Units of inverse second, s™1, are awkward in speech, so an abbre-
viation has been created. One Hertz, named in honor of a pioneer
of radio technology, is one cycle per second. In abbreviated form,
1 Hz = 1 s~!. This is the familiar unit used for the frequencies on
the radio dial.

Frequency of a radio station example 3
> KKJZ's frequency is 88.1 MHz. What does this mean, and what
period does this correspond to?

> The metric prefix M- is mega-, i.e., millions. The radio waves
emitted by KKJZ’s transmitting antenna vibrate 88.1 million times
per second. This corresponds to a period of

T=1/f=114x108s

This example shows a second reason why we normally speak in
terms of frequency rather than period: it would be painful to have
to refer to such small time intervals routinely. | could abbreviate
by telling people that KKJZ’s period was 11.4 nanoseconds, but
most people are more familiar with the big metric prefixes than
with the small ones.

Units of frequency are also commonly used to specify the speeds
of computers. The idea is that all the little circuits on a computer
chip are synchronized by the very fast ticks of an electronic clock, so
that the circuits can all cooperate on a task without getting ahead
or behind. Adding two numbers might require, say, 30 clock cycles.
Microcomputers these days operate at clock frequencies of about a
gigahertz.

We have discussed how to measure how fast something vibrates,
but not how big the vibrations are. The general term for this is
amplitude, A. The definition of amplitude depends on the system
being discussed, and two people discussing the same system may
not even use the same definition. In the example of the block on the
end of the spring, d/1, the amplitude will be measured in distance
units such as cm. One could work in terms of the distance traveled
by the block from the extreme left to the extreme right, but it
would be somewhat more common in physics to use the distance
from the center to one extreme. The former is usually referred to as
the peak-to-peak amplitude, since the extremes of the motion look
like mountain peaks or upside-down mountain peaks on a graph of
position versus time.

In other situations we would not even use the same units for am-
plitude. The amplitude of a child on a swing, or a pendulum, d/2,
would most conveniently be measured as an angle, not a distance,
since her feet will move a greater distance than her head. The elec-
trical vibrations in a radio receiver would be measured in electrical
units such as volts or amperes.

16 Chapter 1 Vibrations



1.2 Simple Harmonic Motion

Why are sine-wave vibrations so common?

If we actually construct the mass-on-a-spring system discussed
in the previous section and measure its motion accurately, we will
find that its z —t graph is nearly a perfect sine-wave shape, as shown
in figure e/1. (We call it a “sine wave” or “sinusoidal” even if it is
a cosine, or a sine or cosine shifted by some arbitrary horizontal
amount.) It may not be surprising that it is a wiggle of this general
sort, but why is it a specific mathematically perfect shape? Why is
it not a sawtooth shape like 2 or some other shape like 37 The mys-
tery deepens as we find that a vast number of apparently unrelated
vibrating systems show the same mathematical feature. A tuning
fork, a sapling pulled to one side and released, a car bouncing on
its shock absorbers, all these systems will exhibit sine-wave motion
under one condition: the amplitude of the motion must be small.

It is not hard to see intuitively why extremes of amplitude would
act differently. For example, a car that is bouncing lightly on its
shock absorbers may behave smoothly, but if we try to double the
amplitude of the vibrations the bottom of the car may begin hitting
the ground, e/4. (Although we are assuming for simplicity in this
chapter that energy is never dissipated, this is clearly not a very
realistic assumption in this example. Each time the car hits the
ground it will convert quite a bit of its potential and kinetic en-
ergy into heat and sound, so the vibrations would actually die out
quite quickly, rather than repeating for many cycles as shown in the
figure.)

The key to understanding how an object vibrates is to know how
the force on the object depends on the object’s position. If an object
is vibrating to the right and left, then it must have a leftward force
on it when it is on the right side, and a rightward force when it is on
the left side. In one dimension, we can represent the direction of the
force using a positive or negative sign, and since the force changes
from positive to negative there must be a point in the middle where
the force is zero. This is the equilibrium point, where the object
would stay at rest if it was released at rest. For convenience of
notation throughout this chapter, we will define the origin of our
coordinate system so that x equals zero at equilibrium.

The simplest example is the mass on a spring, for which force
on the mass is given by Hooke’s law,

F=—kx

We can visualize the behavior of this force using a graph of F' versus
x, as shown in figure f. The graph is a line, and the spring constant,
k, is equal to minus its slope. A stiffer spring has a larger value of
k and a steeper slope. Hooke’s law is only an approximation, but
it works very well for most springs in real life, as long as the spring

t

e / Sinusoidal and non-sinusoidal
vibrations.

f/The force exerted by an
ideal spring, which behaves
exactly according to Hooke’s law.

Section 1.2 Simple Harmonic Motion 17



g/Seen from close up,
F — x curve looks like a line.
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any

isn’t compressed or stretched so much that it is permanently bent
or damaged.

The following important theorem, whose proof is given in op-
tional section 1.3, relates the motion graph to the force graph.

Theorem: A linear force graph makes a sinusoidal motion
graph.

If the total force on a vibrating object depends only on the
object’s position, and is related to the objects displacement
from equilibrium by an equation of the form F = —kx, then
the object’s motion displays a sinusoidal graph with period

T =2m\/m/k.

Even if you do not read the proof, it is not too hard to understand
why the equation for the period makes sense. A greater mass causes
a greater period, since the force will not be able to whip a massive
object back and forth very rapidly. A larger value of k causes a
shorter period, because a stronger force can whip the object back
and forth more rapidly.

This may seem like only an obscure theorem about the mass-on-
a~spring system, but figure g shows it to be far more general than
that. Figure g/1 depicts a force curve that is not a straight line. A
system with this F'— x curve would have large-amplitude vibrations
that were complex and not sinusoidal. But the same system would
exhibit sinusoidal small-amplitude vibrations. This is because any
curve looks linear from very close up. If we magnify the F — x
graph as shown in figure g/2, it becomes very difficult to tell that
the graph is not a straight line. If the vibrations were confined to
the region shown in g/2, they would be very nearly sinusoidal. This
is the reason why sinusoidal vibrations are a universal feature of
all vibrating systems, if we restrict ourselves to small amplitudes.
The theorem is therefore of great general significance. It applies
throughout the universe, to objects ranging from vibrating stars to
vibrating nuclei. A sinusoidal vibration is known as simple harmonic
motion.

Period is approximately independent of Amplitude, if the
Amplitude is small.

Until now we have not even mentioned the most counterintu-
itive aspect of the equation 7" = 27\/m/k: it does not depend on
amplitude at all. Intuitively, most people would expect the mass-on-
a-spring system to take longer to complete a cycle if the amplitude
was larger. (We are comparing amplitudes that are different from
each other, but both small enough that the theorem applies.) In
fact the larger-amplitude vibrations take the same amount of time
as the small-amplitude ones. This is because at large amplitudes,
the force is greater, and therefore accelerates the object to higher
speeds.

Vibrations



Legend has it that this fact was first noticed by Galileo during
what was apparently a less than enthralling church service. A gust
of wind would now and then start one of the chandeliers in the
cathedral swaying back and forth, and he noticed that regardless
of the amplitude of the vibrations, the period of oscillation seemed
to be the same. Up until that time, he had been carrying out his
physics experiments with such crude time-measuring techniques as
feeling his own pulse or singing a tune to keep a musical beat. But
after going home and testing a pendulum, he convinced himself that
he had found a superior method of measuring time. Even without
a fancy system of pulleys to keep the pendulum’s vibrations from
dying down, he could get very accurate time measurements, because
the gradual decrease in amplitude due to friction would have no
effect on the pendulum’s period. (Galileo never produced a modern-
style pendulum clock with pulleys, a minute hand, and a second
hand, but within a generation the device had taken on the form
that persisted for hundreds of years after.)

The pendulum example 4

> Compare the periods of pendula having bobs with different masses.

> From the equation T = 27t\/m/k, we might expect that a larger
mass would lead to a longer period. However, increasing the
mass also increases the forces that act on the pendulum: gravity
and the tension in the string. This increases k as well as m, so
the period of a pendulum is independent of m.

1.3 % Proofs

In this section we prove (1) that a linear F' — x graph gives
sinusoidal motion, (2) that the period of the motion is 2w\/m/k,
and (3) that the period is independent of the amplitude. You may
omit this section without losing the continuity of the chapter.

The basic idea of the proof can be understood by imagining
that you are watching a child on a merry-go-round from far away.
Because you are in the same horizontal plane as her motion, she
appears to be moving from side to side along a line. Circular motion
viewed edge-on doesn’t just look like any kind of back-and-forth
motion, it looks like motion with a sinusoidal x—t graph, because the
sine and cosine functions can be defined as the x and y coordinates
of a point at angle # on the unit circle. The idea of the proof, then,
is to show that an object acted on by a force that varies as F = —kx
has motion that is identical to circular motion projected down to
one dimension. The v?/r expression will also fall out at the end.

Section 1.3

00000000000

h/The object moves along
the circle at constant speed,
but even though its overall
speed is constant, the x and y
components of its velocity are
continuously changing, as shown
by the unequal spacing of the
points when projected onto the
line below. Projected onto the
line, its motion is the same as
that of an object experiencing a
force F = —kx.

* Proofs 19
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i / Example 5.

Chapter 1

The moons of Jupiter. example 5
Before moving on to the proof, we illustrate the concept using
the moons of Jupiter. Their discovery by Galileo was an epochal
event in astronomy, because it proved that not everything in the
universe had to revolve around the earth as had been believed.
Galileo’s telescope was of poor quality by modern standards, but
figure i shows a simulation of how Jupiter and its moons might
appear at intervals of three hours through a large present-day in-
strument. Because we see the moons’ circular orbits edge-on,
they appear to perform sinusoidal vibrations. Over this time pe-
riod, the innermost moon, lo, completes half a cycle.

Jan 22, 10:30

Jan 22, 13:31

Jan 22, 16:33

Jan 22, 19:34

Jan 22, 22:36

Jan 23, 01:37

Jan 23, 04:38

Jan 23, 07:40

For an object performing uniform circular motion, we have

02
la| = —
,

The x component of the acceleration is therefore
02
a, = — cosf ,
r
where 0 is the angle measured counterclockwise from the x axis.

Applying Newton’s second law,

F; v?
— = ——cos#b , SO
m r
2
v
F, = —m—cosf

,
Since our goal is an equation involving the period, it is natural to
eliminate the variable v = circumference/T" = 27r /T, giving

Am?mr

T2 cosf

F,=-—

Vibrations



The quantity r cos @ is the same as x, so we have

47%m
T2

Fp=—

Since everything is constant in this equation except for x, we have
proved that motion with force proportional to x is the same as circu-
lar motion projected onto a line, and therefore that a force propor-
tional to x gives sinusoidal motion. Finally, we identify the constant
factor of 47%m/T? with k, and solving for T gives the desired equa-

tion for the period,
m
T=2m/—
Wk

Since this equation is independent of r, T is independent of the
amplitude, subject to the initial assumption of perfect F = —kx
behavior, which in reality will only hold approximately for small x.

Section 1.3

* Proofs
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Summary
Selected Vocabulary

periodic motion .  motion that repeats itself over and over

period. . ... .. the time required for one cycle of a periodic
motion

frequency . . . . . the number of cycles per second, the inverse of
the period

amplitude . ... the amount of vibration, often measured from

the center to one side; may have different units
depending on the nature of the vibration
simple harmonic motion whose x — ¢ graph is a sine wave

motion . ... ..
Notation

T ... . . period

foo o . frequency

A .. amplitude

k.......... the slope of the graph of F' versus x, where

F' is the total force acting on an object and
x is the object’s position; For a spring, this is
known as the spring constant.

Other Terminology and Notation

Voo oo e The Greek letter v, nu, is used in many books
for frequency.
W oo The Greek letter w, omega, is often used as an

abbreviation for 27 f.
Summary

Periodic motion is common in the world around us because of
conservation laws. An important example is one-dimensional motion
in which the only two forms of energy involved are potential and
kinetic; in such a situation, conservation of energy requires that an
object repeat its motion, because otherwise when it came back to
the same point, it would have to have a different kinetic energy and
therefore a different total energy.

Not only are periodic vibrations very common, but small-amplitude
vibrations are always sinusoidal as well. That is, the x —¢ graph is a
sine wave. This is because the graph of force versus position will al-
ways look like a straight line on a sufficiently small scale. This type
of vibration is called simple harmonic motion. In simple harmonic
motion, the period is independent of the amplitude, and is given by

T =2n\/m/k

Chapter 1 Vibrations



Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 Find an equation for the frequency of simple harmonic motion
in terms of k and m.

2 Many single-celled organisms propel themselves through water
with long tails, which they wiggle back and forth. (The most obvious
example is the sperm cell.) The frequency of the tail’s vibration is
typically about 10-15 Hz. To what range of periods does this range
of frequencies correspond?

3 (a) Pendulum 2 has a string twice as long as pendulum 1. If
we define x as the distance traveled by the bob along a circle away
from the bottom, how does the k£ of pendulum 2 compare with the
k of pendulum 17 Give a numerical ratio. [Hint: the total force
on the bob is the same if the angles away from the bottom are the
same, but equal angles do not correspond to equal values of z.]

(b) Based on your answer from part (a), how does the period of pen-
dulum 2 compare with the period of pendulum 17 Give a numerical
ratio.

4 A pneumatic spring consists of a piston riding on top of the
air in a cylinder. The upward force of the air on the piston is
given by F,i, = axz~'*, where a is a constant with funny units of
N-m!4. For simplicity, assume the air only supports the weight,
Fyy, of the piston itself, although in practice this device is used to
support some other object. The equilibrium position, xg, is where
Fy equals —F,;.. (Note that in the main text I have assumed
the equilibrium position to be at x = 0, but that is not the natural
choice here.) Assume friction is negligible, and consider a case where
the amplitude of the vibrations is very small. Let @ = 1 N-m!'4,
o = 1.00 m, and Fyy = —1.00 N. The piston is released from
2 = 1.01 m. Draw a neat, accurate graph of the total force, F', as a
function of x, on graph paper, covering the range from x = 0.98 m
to 1.02 m. Over this small range, you will find that the force is
very nearly proportional to x — xg. Approximate the curve with a
straight line, find its slope, and derive the approximate period of
oscillation. v

5 Consider the same pneumatic piston described in problem
4, but now imagine that the oscillations are not small. Sketch a
graph of the total force on the piston as it would appear over this
wider range of motion. For a wider range of motion, explain why
the vibration of the piston about equilibrium is not simple harmonic
motion, and sketch a graph of x vs ¢, showing roughly how the curve
is different from a sine wave. [Hint: Acceleration corresponds to the

air

Problem 4.

Problems
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curvature of the x — ¢t graph, so if the force is greater, the graph
should curve around more quickly.]

6 Archimedes’ principle states that an object partly or wholly
immersed in fluid experiences a buoyant force equal to the weight
of the fluid it displaces. For instance, if a boat is floating in water,
the upward pressure of the water (vector sum of all the forces of
the water pressing inward and upward on every square inch of its
hull) must be equal to the weight of the water displaced, because
if the boat was instantly removed and the hole in the water filled
back in, the force of the surrounding water would be just the right
amount to hold up this new “chunk” of water. (a) Show that a cube
of mass m with edges of length b floating upright (not tilted) in a
fluid of density p will have a draft (depth to which it sinks below
the waterline) h given at equilibrium by hg = m/b?p. (b) Find the
total force on the cube when its draft is h, and verify that plugging
in h — hg gives a total force of zero. (c) Find the cube’s period of
oscillation as it bobs up and down in the water, and show that can
be expressed in terms of and g only.

7  The figure shows a see-saw with two springs at Codornices Park
in Berkeley, California. Each spring has spring constant k, and a
kid of mass m sits on each seat. (a) Find the period of vibration in
terms of the variables k, m, a, and b. (b) Discuss the special case
where a = b, rather than a > b as in the real see-saw. (c) Show that
your answer to part a also makes sense in the case of b = 0. *

8 Show that the equation T' = 2mw\/m/k has units that make
sense.

9 A hot scientific question of the 18th century was the shape
of the earth: whether its radius was greater at the equator than at
the poles, or the other way around. One method used to attack this
question was to measure gravity accurately in different locations
on the earth using pendula. If the highest and lowest latitudes
accessible to explorers were 0 and 70 degrees, then the the strength
of gravity would in reality be observed to vary over a range from
about 9.780 to 9.826 m/s?. This change, amounting to 0.046 m/s?,
is greater than the 0.022 m/s? effect to be expected if the earth
had been spherical. The greater effect occurs because the equator
feels a reduction due not just to the acceleration of the spinning
earth out from under it, but also to the greater radius of the earth
at the equator. What is the accuracy with which the period of a
one-second pendulum would have to be measured in order to prove
that the earth was not a sphere, and that it bulged at the equator?
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Soon after the mile-long Tacoma Narrows Bridge opened in July
1940, motorists began to notice its tendency to vibrate frighteningly
in even a moderate wind. Nicknamed “Galloping Gertie,” the bridge
collapsed in a steady 42-mile-per-hour wind on November 7 of the
same year. The following is an eyewitness report from a newspaper
editor who found himself on the bridge as the vibrations approached
the breaking point.

“Just as I drove past the towers, the bridge began to sway vi-
olently from side to side. Before I realized it, the tilt became so
violent that I lost control of the car... I jammed on the brakes and

Top: A series of images from
a film of the Tacoma Narrows
Bridge vibrating on the day it was
to collapse. Middle: The bridge
immediately before the collapse,
with the sides vibrating 8.5 me-
ters (28 feet) up and down. Note
that the bridge is over a mile long.
Bottom: During and after the fi-
nal collapse. The right-hand pic-
ture gives a sense of the massive
scale of the construction.
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got out, only to be thrown onto my face against the curb.

“Around me I could hear concrete cracking. I started to get my
dog Tubby, but was thrown again before I could reach the car. The
car itself began to slide from side to side of the roadway.

“On hands and knees most of the time, I crawled 500 yards or
more to the towers... My breath was coming in gasps; my knees
were raw and bleeding, my hands bruised and swollen from gripping
the concrete curb... Toward the last, I risked rising to my feet and
running a few yards at a time... Safely back at the toll plaza, I
saw the bridge in its final collapse and saw my car plunge into the
Narrows.”

The ruins of the bridge formed an artificial reef, one of the
world’s largest. It was not replaced for ten years. The reason for
its collapse was not substandard materials or construction, nor was
the bridge under-designed: the piers were hundred-foot blocks of
concrete, the girders massive and made of carbon steel. The bridge
was destroyed because of the physical phenomenon of resonance,
the same effect that allows an opera singer to break a wine glass
with her voice and that lets you tune in the radio station you want.
The replacement bridge, which has lasted half a century so far, was
built smarter, not stronger. The engineers learned their lesson and
simply included some slight modifications to avoid the resonance
phenomenon that spelled the doom of the first one.

2.1 Energy in Vibrations

One way of describing the collapse of the bridge is that the bridge
kept taking energy from the steadily blowing wind and building up
more and more energetic vibrations. In this section, we discuss the
energy contained in a vibration, and in the subsequent sections we
will move on to the loss of energy and the adding of energy to a
vibrating system, all with the goal of understanding the important
phenomenon of resonance.

Going back to our standard example of a mass on a spring, we
find that there are two forms of energy involved: the potential energy
stored in the spring and the kinetic energy of the moving mass. We
may start the system in motion either by hitting the mass to put in
kinetic energy by pulling it to one side to put in potential energy.
Either way, the subsequent behavior of the system is identical. It
trades energy back and forth between kinetic and potential energy.
(We are still assuming there is no friction, so that no energy is
converted to heat, and the system never runs down.)

The most important thing to understand about the energy con-
tent of vibrations is that the total energy is proportional to the
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square of the amplitude. Although the total energy is constant, it
is instructive to consider two specific moments in the motion of the
mass on a spring as examples. When the mass is all the way to
one side, at rest and ready to reverse directions, all its energy is
potential. We have already seen that the potential energy stored
in a spring equals (1/2)kz?, so the energy is proportional to the
square of the amplitude. Now consider the moment when the mass
is passing through the equilibrium point at x = 0. At this point it
has no potential energy, but it does have kinetic energy. The veloc-
ity is proportional to the amplitude of the motion, and the kinetic
energy, (1/2)mw?, is proportional to the square of the velocity, so
again we find that the energy is proportional to the square of the
amplitude. The reason for singling out these two points is merely
instructive; proving that energy is proportional to A? at any point
would suffice to prove that energy is proportional to A2 in general,
since the energy is constant.

Are these conclusions restricted to the mass-on-a-spring exam-
ple? No. We have already seen that F' = —kx is a valid approxima-
tion for any vibrating object, as long as the amplitude is small. We
are thus left with a very general conclusion: the energy of any vibra-
tion is approximately proportional to the square of the amplitude,
provided that the amplitude is small.

Water in a U-tube example 1
If water is poured into a U-shaped tube as shown in the figure, it
can undergo vibrations about equilibrium. The energy of such a
vibration is most easily calculated by considering the “turnaround
point” when the water has stopped and is about to reverse direc-
tions. At this point, it has only potential energy and no kinetic
energy, so by calculating its potential energy we can find the en-
ergy of the vibration. This potential energy is the same as the
work that would have to be done to take the water out of the right-
hand side down to a depth A below the equilibrium level, raise it
through a height A, and place it in the left-hand side. The weight
of this chunk of water is proportional to A, and so is the height
through which it must be lifted, so the energy is proportional to
A2,

The range of energies of sound waves example 2
> The amplitude of vibration of your eardrum at the threshold of
pain is about 10 times greater than the amplitude with which
it vibrates in response to the softest sound you can hear. How
many times greater is the energy with which your ear has to cope
for the painfully loud sound, compared to the soft sound?

> The amplitude is 108 times greater, and energy is proportional
to the square of the amplitude, so the energy is greater by a factor

Section 2.1
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of 10'2 . This is a phenomenally large factor!

We are only studying vibrations right now, not waves, so we are
not yet concerned with how a sound wave works, or how the energy
gets to us through the air. Note that because of the huge range of
energies that our ear can sense, it would not be reasonable to have
a sense of loudness that was additive. Consider, for instance, the
following three levels of sound:

barely audible wind

quiet conversation .... 10° times more energy than the
wind

heavy metal concert .. 10'? times more energy than the
wind

In terms of addition and subtraction, the difference between the
wind and the quiet conversation is nothing compared to the differ-
ence between the quiet conversation and the heavy metal concert.
Evolution wanted our sense of hearing to be able to encompass all
these sounds without collapsing the bottom of the scale so that any-
thing softer than the crack of doom would sound the same. So rather
than making our sense of loudness additive, mother nature made it
multiplicative. We sense the difference between the wind and the
quiet conversation as spanning a range of about 5/12 as much as the
whole range from the wind to the heavy metal concert. Although
a detailed discussion of the decibel scale is not relevant here, the
basic point to note about the decibel scale is that it is logarithmic.
The zero of the decibel scale is close to the lower limit of human
hearing, and adding 1 unit to the decibel measurement corresponds
to multiplying the energy level (or actually the power per unit area)
by a certain factor.

2.2 Energy Lost From Vibrations

Until now, we have been making the relatively unrealistic as-
sumption that a vibration would never die out. For a realistic mass
on a spring, there will be friction, and the kinetic and potential
energy of the vibrations will therefore be gradually converted into
heat. Similarly, a guitar string will slowly convert its kinetic and
potential energy into sound. In all cases, the effect is to “pinch” the
sinusoidal x — t graph more and more with passing time. Friction

of is not necessarily bad in this context — a musical instrument that
never got rid of any of its energy would be completely silent! The
dissipation of the energy in a vibration is known as damping.

self-check A

Most people who try to draw graphs like those shown on the left will
tend to shrink their wiggles horizontally as well as vertically. Why is this
wrong? > Answer, p. 98

In the graphs in figure b, I have not shown any point at which
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the damped vibration finally stops completely. Is this realistic? Yes
and no. If energy is being lost due to friction between two solid
surfaces, then we expect the force of friction to be nearly indepen-
dent of velocity. This constant friction force puts an upper limit on
the total distance that the vibrating object can ever travel without
replenishing its energy, since work equals force times distance, and
the object must stop doing work when its energy is all converted
into heat. (The friction force does reverse directions when the ob-
ject turns around, but reversing the direction of the motion at the
same time that we reverse the direction of the force makes it certain
that the object is always doing positive work, not negative work.)

Damping due to a constant friction force is not the only possi-
bility however, or even the most common one. A pendulum may
be damped mainly by air friction, which is approximately propor-
tional to v2, while other systems may exhibit friction forces that
are proportional to v. It turns out that friction proportional to v
is the simplest case to analyze mathematically, and anyhow all the
important physical insights can be gained by studying this case.

If the friction force is proportional to v, then as the vibrations
die down, the frictional forces get weaker due to the lower speeds.
The less energy is left in the system, the more miserly the system
becomes with giving away any more energy. Under these conditions,
the vibrations theoretically never die out completely, and mathemat-
ically, the loss of energy from the system is exponential: the system
loses a fixed percentage of its energy per cycle. This is referred to
as exponential decay.

A non-rigorous proof is as follows. The force of friction is pro-
portional to v, and v is proportional to how far the objects travels in
one cycle, so the frictional force is proportional to amplitude. The
amount of work done by friction is proportional to the force and to
the distance traveled, so the work done in one cycle is proportional
to the square of the amplitude. Since both the work and the energy
are proportional to A2, the amount of energy taken away by friction
in one cycle is a fixed percentage of the amount of energy the system
has.

self-check B

Figure ¢ shows an x-t graph for a strongly damped vibration, which loses
half of its amplitude with every cycle. What fraction of the energy is lost
in each cycle? > Answer, p. 98

It is customary to describe the amount of damping with a quan-
tity called the quality factor, (), defined as the number of cycles
required for the energy to fall off by a factor of 535. (The origin
of this obscure numerical factor is e?™, where e = 2.71828. .. is the
base of natural logarithms. Choosing this particular number causes
some of our later equations to come out nice and simple.) The ter-
minology arises from the fact that friction is often considered a bad

¢/ The amplitude
with each cycle.
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d/1. Pushing a child on a
swing gradually puts more and
more energy into her vibrations.
2. A fairly realistic graph of the
driving force acting on the child.
3. A less realistic, but more
mathematically simple, driving
force.

thing, so a mechanical device that can vibrate for many oscillations
before it loses a significant fraction of its energy would be considered
a high-quality device.

Exponential decay in a trumpet example 3
> The vibrations of the air column inside a trumpet have a Q of
about 10. This means that even after the trumpet player stops
blowing, the note will keep sounding for a short time. If the player
suddenly stops blowing, how will the sound intensity 20 cycles
later compare with the sound intensity while she was still blowing?

> The trumpet’s Q is 10, so after 10 cycles the energy will have
fallen off by a factor of 535. After another 10 cycles we lose an-
other factor of 535, so the sound intensity is reduced by a factor
of 535 x 535 = 2.9 x 10°.

The decay of a musical sound is part of what gives it its charac-
ter, and a good musical instrument should have the right ¢, but the
(@ that is considered desirable is different for different instruments.
A guitar is meant to keep on sounding for a long time after a string
has been plucked, and might have a @ of 1000 or 10000. One of the
reasons why a cheap synthesizer sounds so bad is that the sound
suddenly cuts off after a key is released.

Q of a stereo speaker example 4
Stereo speakers are not supposed to reverberate or “ring” after an
electrical signal that stops suddenly. After all, the recorded music
was made by musicians who knew how to shape the decays of
their notes correctly. Adding a longer “tail” on every note would
make it sound wrong. We therefore expect that stereo speaker
will have a very low Q, and indeed, most speakers are designed
with a Q of about 1. (Low-quality speakers with larger Q values
are referred to as “boomy.”)

We will see later in the chapter that there are other reasons why
a speaker should not have a high Q.

Putting Energy Into Vibrations

When pushing a child on a swing, you cannot just apply a con-
stant force. A constant force will move the swing out to a certain
angle, but will not allow the swing to start swinging. Nor can you
give short pushes at randomly chosen times. That type of ran-
dom pushing would increase the child’s kinetic energy whenever you
happened to be pushing in the same direction as her motion, but it
would reduce her energy when your pushing happened to be in the
opposite direction compared to her motion. To make her build up
her energy, you need to make your pushes rhythmic, pushing at the
same point in each cycle. In other words, your force needs to form a
repeating pattern with the same frequency as the normal frequency
of vibration of the swing. Graph d/1 shows what the child’s x — ¢
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graph would look like as you gradually put more and more energy
into her vibrations. A graph of your force versus time would prob-
ably look something like graph 2. It turns out, however, that it is
much simpler mathematically to consider a vibration with energy
being pumped into it by a driving force that is itself a sine-wave, 3.
A good example of this is your eardrum being driven by the force
of a sound wave.

Now we know realistically that the child on the swing will not
keep increasing her energy forever, nor does your eardrum end up t
exploding because a continuing sound wave keeps pumping more and
more energy into it. In any realistic system, there is energy going
out as well as in. As the vibrations increase in amplitude, there is an
increase in the amount of energy taken away by damping with each
cycle. This occurs for two reasons. Work equals force times distance
(or, more accurately, the area under the force-distance curve). As
the amplitude of the vibrations increases, the damping force is being
applied over a longer distance. Furthermore, the damping force
usually increases with velocity (we usually assume for simplicity
that it is proportional to velocity), and this also serves to increase
the rate at which damping forces remove energy as the amplitude
increases. Eventually (and small children and our eardrums are
thankful for this!), the amplitude approaches a maximum value, e,
at which energy is removed by the damping force just as quickly as
it is being put in by the driving force.

e/ The amplitude approaches a
maximum.

This process of approaching a maximum amplitude happens ex-
tremely quickly in many cases, e.g., the ear or a radio receiver, and
we don’t even notice that it took a millisecond or a microsecond
for the vibrations to “build up steam.” We are therefore mainly
interested in predicting the behavior of the system once it has had
enough time to reach essentially its maximum amplitude. This is
known as the steady-state behavior of a vibrating system.

Now comes the interesting part: what happens if the frequency
of the driving force is mismatched to the frequency at which the
system would naturally vibrate on its own? We all know that a
radio station doesn’t have to be tuned in exactly, although there is
only a small range over which a given station can be received. The
designers of the radio had to make the range fairly small to make
it possible eliminate unwanted stations that happened to be nearby
in frequency, but it couldn’t be too small or you wouldn’t be able
to adjust the knob accurately enough. (Even a digital radio can
be tuned to 88.0 MHz and still bring in a station at 88.1 MHz.)
The ear also has some natural frequency of vibration, but in this
case the range of frequencies to which it can respond is quite broad.
Evolution has made the ear’s frequency response as broad as pos-
sible because it was to our ancestors’ advantage to be able to hear
everything from a low roars to a high-pitched shriek.

The remainder of this section develops four important facts about
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the response of a system to a driving force whose frequency is not
necessarily the same as the system’s natural frequency of vibration.
The style is approximate and intuitive, but proofs are given in the
subsequent optional section.

First, although we know the ear has a frequency — about 4000
Hz — at which it would vibrate naturally, it does not vibrate at
4000 Hz in response to a low-pitched 200 Hz tone. It always re-
sponds at the frequency at which it is driven. Otherwise all pitches
would sound like 4000 Hz to us. This is a general fact about driven
vibrations:

(1) The steady-state response to a sinusoidal driving force oc-
curs at the frequency of the force, not at the system’s own natural
frequency of vibration.

Now let’s think about the amplitude of the steady-state response.
Imagine that a child on a swing has a natural frequency of vibration
of 1 Hz, but we are going to try to make her swing back and forth at
3 Hz. We intuitively realize that quite a large force would be needed
to achieve an amplitude of even 30 cm, i.e., the amplitude is less in
proportion to the force. When we push at the natural frequency of
1 Hz, we are essentially just pumping energy back into the system
to compensate for the loss of energy due to the damping (friction)
force. At 3 Hz, however, we are not just counteracting friction. We
are also providing an extra force to make the child’s momentum
reverse itself more rapidly than it would if gravity and the tension
in the chain were the only forces acting. It is as if we are artificially
increasing the k of the swing, but this is wasted effort because we
spend just as much time decelerating the child (taking energy out
of the system) as accelerating her (putting energy in).

Now imagine the case in which we drive the child at a very
low frequency, say 0.02 Hz or about one vibration per minute. We
are essentially just holding the child in position while very slowly
walking back and forth. Again we intuitively recognize that the
amplitude will be very small in proportion to our driving force.
Imagine how hard it would be to hold the child at our own head-
level when she is at the end of her swing! As in the too-fast 3 Hz
case, we are spending most of our effort in artificially changing the
k of the swing, but now rather than reinforcing the gravity and
tension forces we are working against them, effectively reducing k.
Only a very small part of our force goes into counteracting friction,
and the rest is used in repetitively putting potential energy in on
the upswing and taking it back out on the downswing, without any
long-term gain.

We can now generalize to make the following statement, which
is true for all driven vibrations:
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(2) A vibrating system resonates at its own natural frequency.
That is, the amplitude of the steady-state response is greatest in
proportion to the amount of driving force when the driving force
matches the natural frequency of vibration.

An opera singer breaking a wine glass example 5
In order to break a wineglass by singing, an opera singer must
first tap the glass to find its natural frequency of vibration, and
then sing the same note back.

Collapse of the Nimitz Freeway in an earthquake example 6
| led off the chapter with the dramatic collapse of the Tacoma
Narrows Bridge, mainly because a it was well documented by a
local physics professor, and an unknown person made a movie
of the collapse. The collapse of a section of the Nimitz Freeway
in Oakland, CA, during a 1989 earthquake is however a simpler
example to analyze.

An earthquake consists of many low-frequency vibrations that oc-
cur simultaneously, which is why it sounds like a rumble of inde-
terminate pitch rather than a low hum. The frequencies that we
can hear are not even the strongest ones; most of the energy is
in the form of vibrations in the range of frequencies from about 1
Hz to 10 Hz.

Now all the structures we build are resting on geological layers
of dirt, mud, sand, or rock. When an earthquake wave comes
along, the topmost layer acts like a system with a certain natural
frequency of vibration, sort of like a cube of jello on a plate being
shaken from side to side. The resonant frequency of the layer
depends on how stiff it is and also on how deep it is. The ill-
fated section of the Nimitz freeway was built on a layer of mud,
and analysis by geologist Susan E. Hough of the U.S. Geological
Survey shows that the mud layer’s resonance was centered on
about 2.5 Hz, and had a width covering a range from about 1 Hz
to 4 Hz.

When the earthquake wave came along with its mixture of fre-
quencies, the mud responded strongly to those that were close to
its own natural 2.5 Hz frequency. Unfortunately, an engineering
analysis after the quake showed that the overpass itself had a res-
onant frequency of 2.5 Hz as well! The mud responded strongly to
the earthquake waves with frequencies close to 2.5 Hz, and the
bridge responded strongly to the 2.5 Hz vibrations of the mud,
causing sections of it to collapse.

Collapse of the Tacoma Narrows Bridge example 7
Let's now examine the more conceptually difficult case of the
Tacoma Narrows Bridge. The surprise here is that the wind was
steady. If the wind was blowing at constant velocity, why did it

f/The collapsed
the Nimitz Freeway.
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shake the bridge back and forth? The answer is a little compli-
cated. Based on film footage and after-the-fact wind tunnel exper-
iments, it appears that two different mechanisms were involved.

The first mechanism was the one responsible for the initial, rel-
atively weak vibrations, and it involved resonance. As the wind
moved over the bridge, it began acting like a kite or an airplane
wing. As shown in the figure, it established swirling patterns of air
flow around itself, of the kind that you can see in a moving cloud
of smoke. As one of these swirls moved off of the bridge, there
was an abrupt change in air pressure, which resulted in an up or
down force on the bridge. We see something similar when a flag
flaps in the wind, except that the flag’s surface is usually verti-
cal. This back-and-forth sequence of forces is exactly the kind of
periodic driving force that would excite a resonance. The faster
the wind, the more quickly the swirls would get across the bridge,
and the higher the frequency of the driving force would be. At just
the right velocity, the frequency would be the right one to excite
the resonance. The wind-tunnel models, however, show that the
pattern of vibration of the bridge excited by this mechanism would
have been a different one than the one that finally destroyed the
bridge.

The bridge was probably destroyed by a different mechanism, in
which its vibrations at its own natural frequency of 0.2 Hz set up
an alternating pattern of wind gusts in the air immediately around
it, which then increased the amplitude of the bridge’s vibrations.
This vicious cycle fed upon itself, increasing the amplitude of the
vibrations until the bridge finally collapsed.

As long as we’re on the subject of collapsing bridges, it is worth
bringing up the reports of bridges falling down when soldiers march-
ing over them happened to step in rhythm with the bridge’s natural
frequency of oscillation. This is supposed to have happened in 1831
in Manchester, England, and again in 1849 in Anjou, France. Many
modern engineers and scientists, however, are suspicious of the anal-
ysis of these reports. It is possible that the collapses had more to do
with poor construction and overloading than with resonance. The
Nimitz Freeway and Tacoma Narrows Bridge are far better docu-
mented, and occurred in an era when engineers’ abilities to analyze
the vibrations of a complex structure were much more advanced.

Emission and absorption of light waves by atoms example 8
In a very thin gas, the atoms are sufficiently far apart that they can
act as individual vibrating systems. Although the vibrations are of
a very strange and abstract type described by the theory of quan-
tum mechanics, they nevertheless obey the same basic rules as
ordinary mechanical vibrations. When a thin gas made of a cer-
tain element is heated, it emits light waves with certain specific
frequencies, which are like a fingerprint of that element. As with
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all other vibrations, these atomic vibrations respond most strongly
to a driving force that matches their own natural frequency. Thus
if we have a relatively cold gas with light waves of various fre-
quencies passing through it, the gas will absorb light at precisely
those frequencies at which it would emit light if heated.

(3) When a system is driven at resonance, the steady-state vi-
brations have an amplitude that is proportional to Q).

This is fairly intuitive. The steady-state behavior is an equilib-
rium between energy input from the driving force and energy loss
due to damping. A low-Q oscillator, i.e., one with strong damping,
dumps its energy faster, resulting in lower-amplitude steady-state
motion.

self-check C
If an opera singer is shopping for a wine glass that she can impress her
friends by breaking, what should she look for? > Answer, p. 98

Piano strings ringing in sympathy with a sung note  example 9
> A sufficiently loud musical note sung near a piano with the lid
raised can cause the corresponding strings in the piano to vibrate.
(A piano has a set of three strings for each note, all struck by the
same hammer.) Why would this trick be unlikely to work with a
violin?

> If you have heard the sound of a violin being plucked (the pizzi-
cato effect), you know that the note dies away very quickly. In
other words, a violin’s Q is much lower than a piano’s. This means
that its resonances are much weaker in amplitude.

Our fourth and final fact about resonance is perhaps the most
surprising. It gives us a way to determine numerically how wide
a range of driving frequencies will produce a strong response. As
shown in the graph, resonances do not suddenly fall off to zero out-
side a certain frequency range. It is usual to describe the width of a
resonance by its full width at half-maximum (FWHM) as illustrated
in figure g.

(4) The FWHM of a resonance is related to its () and its resonant
frequency fr.s by the equation

fres
Q

(This equation is only a good approximation when @ is large.)

FWHM =

Why? It is not immediately obvious that there should be any
logical relationship between () and the FWHM. Here’s the idea. As
we have seen already, the reason why the response of an oscillator
is smaller away from resonance is that much of the driving force is

energy of
steady-
state
vibrations

frequency

g/ The definition of
width at half maximum.
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being used to make the system act as if it had a different k. Roughly
speaking, the half-maximum points on the graph correspond to the
places where the amount of the driving force being wasted in this
way is the same as the amount of driving force being used pro-
ductively to replace the energy being dumped out by the damping
force. If the damping force is strong, then a large amount of force
is needed to counteract it, and we can waste quite a bit of driving
force on changing k before it becomes comparable to the damping
force. If, on the other hand, the damping force is weak, then even a
small amount of force being wasted on changing k will become sig-
nificant in proportion, and we cannot get very far from the resonant
frequency before the two are comparable.

Changing the pitch of a wind instrument example 10
> A saxophone player normally selects which note to play by
choosing a certain fingering, which gives the saxophone a cer-
tain resonant frequency. The musician can also, however, change
the pitch significantly by altering the tightness of her lips. This
corresponds to driving the horn slightly off of resonance. If the
pitch can be altered by about 5% up or down (about one musi-
cal half-step) without too much effort, roughly what is the Q of a
saxophone?

> Five percent is the width on one side of the resonance, so the
full width is about 10%, FWHM / f,es = 0.1. This implies a Q
of about 10, i.e., once the musician stops blowing, the horn will
continue sounding for about 10 cycles before its energy falls off by
a factor of 535. (Blues and jazz saxophone players will typically
choose a mouthpiece that has a low Q, so that they can produce
the bluesy pitch-slides typical of their style. “Leqit,” i.e., classically
oriented players, use a higher-Q setup because their style only
calls for enough pitch variation to produce a vibrato.)

Decay of a saxophone tone example 11
> If a typical saxophone setup has a Q of about 10, how long will
it take for a 100-Hz tone played on a baritone saxophone to die
down by a factor of 535 in energy, after the player suddenly stops
blowing?

> A Q of 10 means that it takes 10 cycles for the vibrations to die
down in energy by a factor of 535. Ten cycles at a frequency of
100 Hz would correspond to a time of 0.1 seconds, which is not
very long. This is why a saxophone note doesn’t “ring” like a note
played on a piano or an electric guitar.

Q of a radio receiver example 12
> A radio receiver used in the FM band needs to be tuned in to
within about 0.1 MHz for signals at about 100 MHz. What is its
Q?

> Q = fres/FWHM = 1000. This is an extremely high Q compared
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to most mechanical systems.

Q of a stereo speaker example 13
We have already given one reason why a stereo speaker should
have a low Q: otherwise it would continue ringing after the end of
the musical note on the recording. The second reason is that we
want it to be able to respond to a large range of frequencies.

Nuclear magnetic resonance example 14
If you have ever played with a magnetic compass, you have un-
doubtedly noticed that if you shake it, it takes some time to settle
down, h/1. As it settles down, it acts like a damped oscillator of
the type we have been discussing. The compass needle is simply
a small magnet, and the planet earth is a big magnet. The mag-
netic forces between them tend to bring the needle to an equilib-
rium position in which it lines up with the planet-earth-magnet.

Essentially the same physics lies behind the technique called Nu-
clear Magnetic Resonance (NMR). NMR is a technique used to
deduce the molecular structure of unknown chemical substances,
and it is also used for making medical images of the inside of peo-
ple’s bodies. If you ever have an NMR scan, they will actually tell
you you are undergoing “magnetic resonance imaging” or “MRI,”
because people are scared of the word “nuclear.” In fact, the
nuclei being referred to are simply the non-radioactive nuclei of
atoms found naturally in your body.

Here’s how NMR works. Your body contains large numbers of
hydrogen atoms, each consisting of a small, lightweight electron
orbiting around a large, heavy proton. That is, the nucleus of a
hydrogen atom is just one proton. A proton is always spinning
on its own axis, and the combination of its spin and its electrical
charge cause it to behave like a tiny magnet. The principle iden-
tical to that of an electromagnet, which consists of a coil of wire
through which electrical charges pass; the circling motion of the
charges in the coil of wire makes it magnetic, and in the same
way, the circling motion of the proton’s charge makes it magnetic.

Now a proton in one of your body’s hydrogen atoms finds itself
surrounded by many other whirling, electrically charged particles:
its own electron, plus the electrons and nuclei of the other nearby
atoms. These neighbors act like magnets, and exert magnetic
forces on the proton, h/2. The k of the vibrating proton is simply a
measure of the total strength of these magnetic forces. Depend-
ing on the structure of the molecule in which the hydrogen atom
finds itself, there will be a particular set of magnetic forces acting
on the proton and a particular value of k. The NMR apparatus
bombards the sample with radio waves, and if the frequency of
the radio waves matches the resonant frequency of the proton,
the proton will absorb radio-wave energy strongly and oscillate
wildly. lts vibrations are damped not by friction, because there is

1

2
h/Example 14. 1. A com-
pass needle vibrates about the
equilibrium position under the
influence of the earth’s magnetic
forces. 2. The orientation of a
proton’s spin vibrates around its
equilibrium direction under the
influence of the magnetic forces

coming from the surrounding
electrons and nuclei.

i/A member of the author’s
family, who turned out to be
healthy.

j/A  three-dimensional com-
puter reconstruction of the shape
of a human brain, based on
magnetic resonance data.
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k/ Driving at a frequency above

resonance.

I/ Driving at resonance.

m / Driving
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at
below resonance.

a frequency

no friction inside an atom, but by the reemission of radio waves.

By working backward through this chain of reasoning, one can de-
termine the geometric arrangement of the hydrogen atom’s neigh-
boring atoms. It is also possible to locate atoms in space, allowing
medical images to be made.

Finally, it should be noted that the behavior of the proton cannot
be described entirely correctly by Newtonian physics. lts vibra-
tions are of the strange and spooky kind described by the laws of
quantum mechanics. It is impressive, however, that the few sim-
ple ideas we have learned about resonance can still be applied
successfully to describe many aspects of this exotic system.

Discussion Question

A Nikola Tesla, one of the inventors of radio and an archetypical mad
scientist, told a credulous reporter the following story about an applica-
tion of resonance. He built an electric vibrator that fit in his pocket, and
attached it to one of the steel beams of a building that was under construc-
tion in New York. Although the article in which he was quoted didn’t say
so, he presumably claimed to have tuned it to the resonant frequency of
the building. “In a few minutes, | could feel the beam trembling. Gradually
the trembling increased in intensity and extended throughout the whole
great mass of steel. Finally, the structure began to creak and weave, and
the steelworkers came to the ground panic-stricken, believing that there
had been an earthquake. ... [If] | had kept on ten minutes more, | could
have laid that building flat in the street.” Is this physically plausible?

* Proofs

Our first goal is to predict the amplitude of the steady-state
vibrations as a function of the frequency of the driving force and
the amplitude of the driving force. With that equation in hand, we
will then prove statements 2, 3, and 4 from the previous section.
We assume without proof statement 1, that the steady-state motion
occurs at the same frequency as the driving force.

As with the proof in chapter 1, we make use of the fact that
a sinusoidal vibration is the same as the projection of circular mo-
tion onto a line. We visualize the system shown in figures k-m,
in which the mass swings in a circle on the end of a spring. The
spring does not actually change its length at all, but it appears to
from the flattened perspective of a person viewing the system edge-
on. The radius of the circle is the amplitude, A, of the vibrations
as seen edge-on. The damping force can be imagined as a back-
ward drag force supplied by some fluid through which the mass is
moving. As usual, we assume that the damping is proportional to
velocity, and we use the symbol b for the proportionality constant,
|Fy| = bv. The driving force, represented by a hand towing the mass
with a string, has a tangential component |F;| which counteracts the
damping force, |F;| = |Fy|, and a radial component F,. which works
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either with or against the spring’s force, depending on whether we
are driving the system above or below its resonant frequency.

The speed of the rotating mass is the circumference of the circle
divided by the period, v = 2w A/T, its acceleration (which is directly
inward) is @ = v?/r, and Newton’s second law gives a = F/m =
(kA+ F.)/m. We write fyes for 5=+/k/m. Straightforward algebra
yields

F.  2mm

[1] E_W(]d_f?es)

This is the ratio of the wasted force to the useful force, and we see
that it becomes zero when the system is driven at resonance.

The amplitude of the vibrations can be found by attacking the
equation |F}| = bv = 2wbAf, which gives

_ A
~ 27bf (2)

2]

However, we wish to know the amplitude in terms of —F—, not
|F;|. From now on, let’s drop the cumbersome magnitude symbols.
With the Pythagorean theorem, it is easily proven that

3] A S

2
Fr
1+ (&)
and equations 1-3 can then be combined to give the final result

F
A=
2myfAnm? (f2 = f2.)° + B2

[4]

Statement 2: maximum Amplitude at resonance

Equation 4 shows directly that the amplitude is maximized when
the system is driven at its resonant frequency. At resonance, the first
term inside the square root vanishes, and this makes the denomi-
nator as small as possible, causing the amplitude to be as big as
possible. (Actually this is only approximately true, because it is
possible to make A a little bigger by decreasing f a little below
fres, which makes the second term smaller. This technical issue is
addressed in homework problem 3 on page 43.)

Statement 3: Amplitude at resonance proportional to g

Equation 4 shows that the amplitude at resonance is propor-
tional to 1/b, and the @ of the system is inversely proportional to
b, so the amplitude at resonance is proportional to Q.

Section 2.4

* Proofs
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Statement 4: fwhm related to q

We will satisfy ourselves by proving only the proportionality
FWHM  fres/Q, not the actual equation FWHM = f..s/Q.
The energy is proportional to A2, i.e., to the inverse of the quantity
inside the square root in equation 4. At resonance, the first term
inside the square root vanishes, and the half-maximum points occur
at frequencies for which the whole quantity inside the square root
is double its value at resonance, i.e., when the two terms are equal.
At the half-maximum points, we have
FWHM\?
) - fres

2 2 _
f _fres_(fTesj: 9

1
=+ fres - FWHM + ZFWHM2

If we assume that the width of the resonance is small compared to
the resonant frequency, then the FWHM? term is negligible com-
pared to the fres - FWHM term, and setting the terms in equation
4 equal to each other gives

47°m? (fres FWHM)? = 02 f2

We are assuming that the width of the resonance is small compared
to the resonant frequency, so f and fr.s can be taken as synonyms.

Thus,

FWHM = L
2mm

We wish to connect this to ¢, which can be interpreted as the en-
ergy of the free (undriven) vibrations divided by the work done by
damping in one cycle. The former equals kA?/2, and the latter is
proportional to the force, bv < bAf,.s, multiplied by the distance
traveled, A. (This is only a proportionality, not an equation, since
the force is not constant.) We therefore find that @ is proportional
to k/bfres. The equation for the FWHM can then be restated as a
proportionality FWHM o k/Q fresm X fres/Q.

Resonance



Summary

Selected Vocabulary
damping . . . .. the dissipation of a vibration’s energy into
heat energy, or the frictional force that causes
the loss of energy

quality factor .. the number of oscillations required for a sys-
tem’s energy to fall off by a factor of 535 due
to damping

driving force . . . an external force that pumps energy into a vi-
brating system

resonance . ... the tendency of a vibrating system to respond

most strongly to a driving force whose fre-
quency is close to its own natural frequency
of vibration

steady state . .. the behavior of a vibrating system after it has
had plenty of time to settle into a steady re-
sponse to a driving force

Notation
......... the quality factor

fres « oo oo the natural (resonant) frequency of a vibrating
system, i.e., the frequency at which it would
vibrate if it was simply kicked and left alone

fooo oo, the frequency at which the system actually vi-
brates, which in the case of a driven system is
equal to the frequency of the driving force, not
the natural frequency

Summary

The energy of a vibration is always proportional to the square of
the amplitude, assuming the amplitude is small. Energy is lost from
a vibrating system for various reasons such as the conversion to heat
via friction or the emission of sound. This effect, called damping,
will cause the vibrations to decay exponentially unless energy is
pumped into the system to replace the loss. A driving force that
pumps energy into the system may drive the system at its own
natural frequency or at some other frequency. When a vibrating
system is driven by an external force, we are usually interested in
its steady-state behavior, i.e., its behavior after it has had time to
settle into a steady response to a driving force. In the steady state,
the same amount of energy is pumped into the system during each
cycle as is lost to damping during the same period.

The following are four important facts about a vibrating system
being driven by an external force:

(1) The steady-state response to a sinusoidal driving force oc-
curs at the frequency of the force, not at the system’s own natural
frequency of vibration.

Summary
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(2) A vibrating system resonates at its own natural frequency.
That is, the amplitude of the steady-state response is greatest in
proportion to the amount of driving force when the driving force
matches the natural frequency of vibration.

(3) When a system is driven at resonance, the steady-state vi-
brations have an amplitude that is proportional to Q.

(4) The FWHM of a resonance is related to its () and its resonant
frequency fr.s by the equation

fres
Q

(This equation is only a good approximation when @ is large.)

FWHM =

Resonance



Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 If one stereo system is capable of producing 20 watts of sound
power and another can put out 50 watts, how many times greater
is the amplitude of the sound wave that can be created by the more
powerful system? (Assume they are playing the same music.)

2 Many fish have an organ known as a swim bladder, an air-filled
cavity whose main purpose is to control the fish’s buoyancy an allow
it to keep from rising or sinking without having to use its muscles.
In some fish, however, the swim bladder (or a small extension of it)
is linked to the ear and serves the additional purpose of amplifying
sound waves. For a typical fish having such an anatomy, the bladder
has a resonant frequency of 300 Hz, the bladder’s @ is 3, and the
maximum amplification is about a factor of 100 in energy. Over what
range of frequencies would the amplification be at least a factor of
507

3 As noted in section 2.4, it is only approximately true that the
amplitude has its maximum at f = (1/27)+/k/m. Being more care-
ful, we should actually define two different symbols, fo = (1/27)\/k/m
and fres for the slightly different frequency at which the amplitude
is a maximum, i.e., the actual resonant frequency. In this notation,
the amplitude as a function of frequency is

F
A=
27r\/47T2m2 (f2— f§)2 + b2 f2

Show that the maximum occurs not at f, but rather at the frequency

b2 \/ 1
res — - —— = 2_*F HM2
/ \/fo 8m2m?2 fo 2 w

Hint: Finding the frequency that minimizes the quantity inside the
square root is equivalent to, but much easier than, finding the fre-
quency that maximizes the amplitude. i

Problems
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Problem 6.

4 (a) Let W be the amount of work done by friction in the first
cycle of oscillation, i.e., the amount of energy lost to heat. Find
the fraction of the original energy F that remains in the oscillations
after n cycles of motion.

(b) From this, prove the equation

Q
<1 . W) — 6—271'
E

(recalling that the number 535 in the definition of Q is 7).

(c) Use this to prove the approximation 1/Q ~ (1/27)W/E. (Hint:
Use the approximation In(1+ x) ~ z, which is valid for small values
of z.)

5 The goal of this problem is to refine the proportionality
FWHM  fres/Q into the equation FWHM = f,.5/Q, i.e., to prove
that the constant of proportionality equals 1.

(a) Show that the work done by a damping force F' = —bv over one
cycle of steady-state motion equals Wygm, = —272bf A%, Hint: It
is less confusing to calculate the work done over half a cycle, from
x=—Atox=+A, and then double it.

(b) Show that the fraction of the undriven oscillator’s energy lost to
damping over one cycle is [Wagmp|/E = 472bf /k.

(c) Use the previous result, combined with the result of problem 4,
to prove that @ equals k/27bf .

(d) Combine the preceding result for ) with the equation FWHM =
b/27wm from section 2.4 to prove the equation FWHM = f,.,/Q.

[ =

6 The figure is from Shape memory in Spider draglines, Fmile,
Le Floch, and Vollrath, Nature 440:621 (2006). Panel 1 shows an
electron microscope’s image of a thread of spider silk. In 2, a spi-
der is hanging from such a thread. From an evolutionary point of
view, it’s probably a bad thing for the spider if it twists back and
forth while hanging like this. (We'’re referring to a back-and-forth
rotation about the axis of the thread, not a swinging motion like a
pendulum.) The authors speculate that such a vibration could make
the spider easier for predators to see, and it also seems to me that
it would be a bad thing just because the spider wouldn’t be able
to control its orientation and do what it was trying to do. Panel 3
shows a graph of such an oscillation, which the authors measured
using a video camera and a computer, with a 0.1 g mass hung from it
in place of a spider. Compared to human-made fibers such as kevlar
or copper wire, the spider thread has an unusual set of properties:

1. It has a low @, so the vibrations damp out quickly.
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2. It doesn’t become brittle with repeated twisting as a copper
wire would.

3. When twisted, it tends to settle in to a new equilibrium angle,
rather than insisting on returning to its original angle. You
can see this in panel 2, because although the experimenters
initially twisted the wire by 33 degrees, the thread only per-
formed oscillations with an amplitude much smaller than +35
degrees, settling down to a new equilibrium at 27 degrees.

4. Over much longer time scales (hours), the thread eventually
resets itself to its original equilbrium angle (shown as zero
degrees on the graph). (The graph reproduced here only shows
the motion over a much shorter time scale.) Some human-
made materials have this “memory” property as well, but they
typically need to be heated in order to make them go back to
their original shapes.

Focusing on property number 1, estimate the @ of spider silk from
the graph.

Problems
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“The Great Wave Off Kanagawa,” by Katsushika Hokusai (1760-1849).

Chapter 3
Free Waves

Your vocal cords or a saxophone reed can vibrate, but being able
to vibrate wouldn’t be of much use unless the vibrations could be
transmitted to the listener’s ear by sound waves. What are waves
and why do they exist? Put your fingertip in the middle of a cup
of water and then remove it suddenly. You will have noticed two
results that are surprising to most people. First, the flat surface
of the water does not simply sink uniformly to fill in the volume
vacated by your finger. Instead, ripples spread out, and the process
of flattening out occurs over a long period of time, during which
the water at the center vibrates above and below the normal water
level. This type of wave motion is the topic of the present chapter.
Second, you have found that the ripples bounce off of the walls of
the cup, in much the same way that a ball would bounce off of a
wall. In the next chapter we discuss what happens to waves that
have a boundary around them. Until then, we confine ourselves to
wave phenomena that can be analyzed as if the medium (e.g., the
water) was infinite and the same everywhere.

It isn’t hard to understand why removing your fingertip creates
ripples rather than simply allowing the water to sink back down
uniformly. The initial crater, (a), left behind by your finger has
sloping sides, and the water next to the crater flows downhill to fill
in the hole. The water far away, on the other hand, initially has

—
i ﬁ/\ﬁ

a/Dipping a finger

in some

water, 1, causes a disturbance

that spreads outward, 2.
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no way of knowing what has happened, because there is no slope
for it to flow down. As the hole fills up, the rising water at the
center gains upward momentum, and overshoots, creating a little
hill where there had been a hole originally. The area just outside of
this region has been robbed of some of its water in order to build
the hill, so a depressed “moat” is formed, (b). This effect cascades
outward, producing ripples.

Chapter 3  Free Waves



b/The two circular patterns of
ripples pass through each other.
Unlike material objects, wave pat-
terns can overlap in space, and
when this happens they combine
by addition.

3.1 Wave Motion

There are three main ways in which wave motion differs from the
motion of objects made of matter.

1. superposition

The most profound difference is that waves do not display have
anything analogous to the normal forces between objects that come
in contact. Two wave patterns can therefore overlap in the same
region of space, as shown in figure b. Where the two waves coincide,
they add together. For instance, suppose that at a certain location
in at a certain moment in time, each wave would have had a crest
3 cm above the normal water level. The waves combine at this
point to make a 6-cm crest. We use negative numbers to represent
depressions in the water. If both waves would have had a troughs
measuring -3 c¢m, then they combine to make an extra-deep -6 cm
trough. A +3 cm crest and a -3 cm trough result in a height of zero,
i.e., the waves momentarily cancel each other out at that point.
This additive rule is referred to as the principle of superposition,
“superposition” being merely a fancy word for “adding.”

Superposition can occur not just with sinusoidal waves like the
ones in the figure above but with waves of any shape. The figures
on the following page show superposition of wave pulses. A pulse is
simply a wave of very short duration. These pulses consist only of
a single hump or trough. If you hit a clothesline sharply, you will
observe pulses heading off in both directions. This is analogous to
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the way ripples spread out in all directions when you make a distur-
bance at one point on water. The same occurs when the hammer
on a piano comes up and hits a string.

Experiments to date have not shown any deviation from the
principle of superposition in the case of light waves. For other types
of waves, it is typically a very good approximation for low-energy
waves.

Discussion Question

A In figure ¢/3, the fifth frame shows the spring just about perfectly
flat. If the two pulses have essentially canceled each other out perfectly,
then why does the motion pick up again? Why doesn’t the spring just stay
flat?

1

¢/ These pictures show the motion of wave pulses along a spring. To make a pulse, one end of the
spring was shaken by hand. Movies were filmed, and a series of frame chosen to show the motion. 1. A pulse
travels to the left. 2. Superposition of two colliding positive pulses. 3. Superposition of two colliding pulses, one
positive and one negative.
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d/As the wave pattern passes the rubber duck, the duck stays
put. The water isn’t moving forward with the wave.

2. the medium is not transported with the wave.

Figure d shows a series of water waves before it has reached a
rubber duck (left), having just passed the duck (middle) and having
progressed about a meter beyond the duck (right). The duck bobs
around its initial position, but is not carried along with the wave.
This shows that the water itself does not flow outward with the
wave. If it did, we could empty one end of a swimming pool simply
by kicking up waves! We must distinguish between the motion of
the medium (water in this case) and the motion of the wave pattern
through the medium. The medium vibrates; the wave progresses
through space.

self-check A

In figure e, you can detect the side-to-side motion of the spring because
the spring appears blurry. At a certain instant, represented by a single
photo, how would you describe the motion of the different parts of the
spring? Other than the flat parts, do any parts of the spring have zero
velocity? > Answer, p. 98

'A worm example 1
The worm in the figure is moving to the right. The wave pattern,
a pulse consisting of a compressed area of its body, moves to
the left. In other words, the motion of the wave pattern is in the
opposite direction compared to the motion of the medium.
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e/As the wave pulse goes
by, the ribbon tied to the spring
is not carried along. The motion
of the wave pattern is to the
right, but the medium (spring) is
moving up and down, not to the
right.

Wave Motion 51



f/Example 2.  The surfer is
dragging his hand in the water.

g/ Example 3:
wave.

a breaking

The boat has

h / Example 4.
run up against a limit on its speed
because it can’t climb over its
own wave. Dolphins get around
the problem by leaping out of the
water.

'Surfing example 2
The incorrect belief that the medium moves with the wave is often
reinforced by garbled secondhand knowledge of surfing. Anyone
who has actually surfed knows that the front of the board pushes
the water to the sides, creating a wake — the surfer can even
drag his hand through the water, as in in figure f. If the water was
moving along with the wave and the surfer, this wouldn’t happen.
The surfer is carried forward because forward is downhill, not be-
cause of any forward flow of the water. If the water was flowing
forward, then a person floating in the water up to her neck would
be carried along just as quickly as someone on a surfboard. In
fact, it is even possible to surf down the back side of a wave, al-
though the ride wouldn’t last very long because the surfer and the
wave would quickly part company.

3. a wave’s velocity depends on the medium.

A material object can move with any velocity, and can be sped
up or slowed down by a force that increases or decreases its kinetic
energy. Not so with waves. The magnitude of a wave’s velocity
depends on the properties of the medium (and perhaps also on the
shape of the wave, for certain types of waves). Sound waves travel
at about 340 m/s in air, 1000 m/s in helium. If you kick up water
waves in a pool, you will find that kicking harder makes waves that
are taller (and therefore carry more energy), not faster. The sound
waves from an exploding stick of dynamite carry a lot of energy, but
are no faster than any other waves. In the following section we will
give an example of the physical relationship between the wave speed
and the properties of the medium.

'Breaking waves example 3
The velocity of water waves increases with depth. The crest of a
wave travels faster than the trough, and this can cause the wave
to break.

Once a wave is created, the only reason its speed will change is
if it enters a different medium or if the properties of the medium
change. It is not so surprising that a change in medium can slow
down a wave, but the reverse can also happen. A sound wave trav-
eling through a helium balloon will slow down when it emerges into
the air, but if it enters another balloon it will speed back up again!
Similarly, water waves travel more quickly over deeper water, so a
wave will slow down as it passes over an underwater ridge, but speed
up again as it emerges into deeper water.

'Hull speed example 4
The speeds of most boats, and of some surface-swimming ani-
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mals, are limited by the fact that they make a wave due to their
motion through the water. The boat in figure h is going at the
same speed as its own waves, and can’t go any faster. No mat-
ter how hard the boat pushes against the water, it can’t make
the wave move ahead faster and get out of the way. The wave’s
speed depends only on the medium. Adding energy to the wave
doesn’t speed it up, it just increases its amplitude.

A water wave, unlike many other types of wave, has a speed that
depends on its shape: a broader wave moves faster. The shape
of the wave made by a boat tends to mold itself to the shape of
the boat’s hull, so a boat with a longer hull makes a broader wave
that moves faster. The maximum speed of a boat whose speed is
limited by this effect is therefore closely related to the length of its
hull, and the maximum speed is called the hull speed. Sailboats
designed for racing are not just long and skinny to make them
more streamlined — they are also long so that their hull speeds
will be high.

Wave patterns

If the magnitude of a wave’s velocity vector is preordained, what
about its direction? Waves spread out in all directions from every
point on the disturbance that created them. If the disturbance is
small, we may consider it as a single point, and in the case of water
waves the resulting wave pattern is the familiar circular ripple, i/1.
If, on the other hand, we lay a pole on the surface of the water
and wiggle it up and down, we create a linear wave pattern, i/2.
For a three-dimensional wave such as a sound wave, the analogous
patterns would be spherical waves and plane waves, j.

Infinitely many patterns are possible, but linear or plane waves
are often the simplest to analyze, because the velocity vector is in
the same direction no matter what part of the wave we look at. Since
all the velocity vectors are parallel to one another, the problem is
effectively one-dimensional. Throughout this chapter and the next,
we will restrict ourselves mainly to wave motion in one dimension,
while not hesitating to broaden our horizons when it can be done
without too much complication.

Discussion Questions
A [see above]

B  Sketch two positive wave pulses on a string that are overlapping but
not right on top of each other, and draw their superposition. Do the same
for a positive pulse running into a negative pulse.

C  Atraveling wave pulse is moving to the right on a string. Sketch the
velocity vectors of the various parts of the string. Now do the same for a
pulse moving to the left.

D In a spherical sound wave spreading out from a point, how would
the energy of the wave fall off with distance?

Section 3.1

i/Circular and linear wave
patterns.

j/Plane and spherical wave

patterns.

Wave Motion 53



k/Hitting a key on a piano
causes a hammer to come up
from underneath and hit a string
(actually a set of three strings).
The result is a pair of pulses
moving away from the point of
impact.

I/A string is struck with a
hammer, 1, and two pulses fly off,
2.

m /A continuous string can
be modeled as a series of
discrete masses connected by
springs.

3.2 Waves on a String

So far you have learned some counterintuitive things about the be-
havior of waves, but intuition can be trained. The first half of this
section aims to build your intuition by investigating a simple, one-
dimensional type of wave: a wave on a string. If you have ever
stretched a string between the bottoms of two open-mouthed cans
to talk to a friend, you were putting this type of wave to work.
Stringed instruments are another good example. Although we usu-
ally think of a piano wire simply as vibrating, the hammer actually
strikes it quickly and makes a dent in it, which then ripples out in
both directions. Since this chapter is about free waves, not bounded
ones, we pretend that our string is infinitely long.

After the qualitative discussion, we will use simple approxima-
tions to investigate the speed of a wave pulse on a string. This quick
and dirty treatment is then followed by a rigorous attack using the
methods of calculus, which may be skipped by the student who has
not studied calculus. How far you penetrate in this section is up to
you, and depends on your mathematical self-confidence. If you skip
the later parts and proceed to the next section, you should never-
theless be aware of the important result that the speed at which a
pulse moves does not depend on the size or shape of the pulse. This
is a fact that is true for many other types of waves.

Intuitive ideas

Consider a string that has been struck, 1/1, resulting in the cre-
ation of two wave pulses, 2, one traveling to the left and one to the
right. This is analogous to the way ripples spread out in all direc-
tions from a splash in water, but on a one-dimensional string, “all
directions” becomes “both directions.”

We can gain insight by modeling the string as a series of masses
connected by springs. (In the actual string the mass and the springi-
ness are both contributed by the molecules themselves.) If we look
at various microscopic portions of the string, there will be some ar-
eas that are flat, m/1, some that are sloping but not curved, 2, and
some that are curved, 3 and 4. In example 1 it is clear that both the
forces on the central mass cancel out, so it will not accelerate. The
same is true of 2, however. Only in curved regions such as 3 and 4
is an acceleration produced. In these examples, the vector sum of
the two forces acting on the central mass is not zero. The impor-
tant concept is that curvature makes force: the curved areas of a
wave tend to experience forces resulting in an acceleration toward
the mouth of the curve. Note, however, that an uncurved portion
of the string need not remain motionless. It may move at constant
velocity to either side.
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Approximate treatment

We now carry out an approximate treatment of the speed at
which two pulses will spread out from an initial indentation on a
string. For simplicity, we imagine a hammer blow that creates a tri-
angular dent, n/1. We will estimate the amount of time, ¢, required
until each of the pulses has traveled a distance equal to the width
of the pulse itself. The velocity of the pulses is then +w/t.

As always, the velocity of a wave depends on the properties of
the medium, in this case the string. The properties of the string can
be summarized by two variables: the tension, T', and the mass per
unit length, p (Greek letter mu).

If we consider the part of the string encompassed by the initial
dent as a single object, then this object has a mass of approxi-
mately pw (mass/length x length = mass). (Here, and throughout
the derivation, we assume that A is much less than w, so that we can
ignore the fact that this segment of the string has a length slightly
greater than w.) Although the downward acceleration of this seg-
ment of the string will be neither constant over time nor uniform
across the string, we will pretend that it is constant for the sake of
our simple estimate. Roughly speaking, the time interval between
n/1 and 2 is the amount of time required for the initial dent to accel-
erate from rest and reach its normal, flattened position. Of course
the tip of the triangle has a longer distance to travel than the edges,
but again we ignore the complications and simply assume that the
segment as a whole must travel a distance h. Indeed, it might seem
surprising that the triangle would so neatly spring back to a per-
fectly flat shape. It is an experimental fact that it does, but our
analysis is too crude to address such details.

The string is kinked, i.e., tightly curved, at the edges of the
triangle, so it is here that there will be large forces that do not
cancel out to zero. There are two forces acting on the triangular
hump, one of magnitude T acting down and to the right, and one
of the same magnitude acting down and to the left. If the angle
of the sloping sides is #, then the total force on the segment equals
2T sin@. Dividing the triangle into two right triangles, we see that
sin § equals h divided by the length of one of the sloping sides. Since
h is much less than w, the length of the sloping side is essentially
the same as w/2, so we have sinf = h/w, and F = 4Th/w. The
acceleration of the segment (actually the acceleration of its center
of mass) is

a=F/m
= 4Th/ pw?

The time required to move a distance h under constant acceleration

n / A triangular pulse spreads out.
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a is found by solving h = %at2 to yield

2h

a
w ﬁ
2T

Our final result for the velocity of the pulses is

~
I

w
|U|:?

2T

I

The remarkable feature of this result is that the velocity of the
pulses does not depend at all on w or h, i.e., any triangular pulse
has the same speed. It is an experimental fact (and we will also
prove rigorously in the following subsection) that any pulse of any
kind, triangular or otherwise, travels along the string at the same
speed. Of course, after so many approximations we cannot expect
to have gotten all the numerical factors right. The correct result for
the velocity of the pulses is

T

R el

I
The importance of the above derivation lies in the insight it
brings —that all pulses move with the same speed — rather than in
the details of the numerical result. The reason for our too-high value
for the velocity is not hard to guess. It comes from the assumption

that the acceleration was constant, when actually the total force on
the segment would diminish as it flattened out.

Rigorous derivation using calculus (optional)

After expending considerable effort for an approximate solution,
we now display the power of calculus with a rigorous and completely
general treatment that is nevertheless much shorter and easier. Let
the flat position of the string define the x axis, so that y measures
how far a point on the string is from equilibrium. The motion of
the string is characterized by y(x,t), a function of two variables.
Knowing that the force on any small segment of string depends
on the curvature of the string in that area, and that the second
derivative is a measure of curvature, it is not surprising to find that
the infinitesimal force dF' acting on an infinitesimal segment dx is
given by )

d
dF = Td—g;gd:r
(This can be proved by vector addition of the two infinitesimal forces
acting on either side.) The acceleration is then a = dF/dm, or,
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substituting dm = udz,
d?y T d%

Atz pda?
The second derivative with respect to time is related to the second
derivative with respect to position. This is no more than a fancy
mathematical statement of the intuitive fact developed above, that

the string accelerates so as to flatten out its curves.

Before even bothering to look for solutions to this equation, we
note that it already proves the principle of superposition, because
the derivative of a sum is the sum of the derivatives. Therefore the
sum of any two solutions will also be a solution.

Based on experiment, we expect that this equation will be sat-
isfied by any function y(x,t) that describes a pulse or wave pattern
moving to the left or right at the correct speed v. In general, such
a function will be of the form y = f(z —vt) or y = f(x + vt), where
f is any function of one variable. Because of the chain rule, each
derivative with respect to time brings out a factor of £v. Evaluating
the second derivatives on both sides of the equation gives

T
(:I:U)Q f// _ *f”
1
Squaring gets rid of the sign, and we find that we have a valid
solution for any function f, provided that v is given by

3.3 Sound and Light Waves

Sound waves

The phenomenon of sound is easily found to have all the char-
acteristics we expect from a wave phenomenon:

e Sound waves obey superposition. Sounds do not knock other
sounds out of the way when they collide, and we can hear more
than one sound at once if they both reach our ear simultane-
ously.

e The medium does not move with the sound. Even standing
in front of a titanic speaker playing earsplitting music, we do
not feel the slightest breeze.

e The velocity of sound depends on the medium. Sound travels
faster in helium than in air, and faster in water than in helium.
Putting more energy into the wave makes it more intense, not
faster. For example, you can easily detect an echo when you
clap your hands a short distance from a large, flat wall, and
the delay of the echo is no shorter for a louder clap.

Section 3.3 Sound and Light Waves
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Although not all waves have a speed that is independent of the
shape of the wave, and this property therefore is irrelevant to our
collection of evidence that sound is a wave phenomenon, sound does
nevertheless have this property. For instance, the music in a large
concert hall or stadium may take on the order of a second to reach
someone seated in the nosebleed section, but we do not notice or
care, because the delay is the same for every sound. Bass, drums,
and vocals all head outward from the stage at 340 m/s, regardless
of their differing wave shapes.

If sound has all the properties we expect from a wave, then what
type of wave is it? It must be a vibration of a physical medium such
as air, since the speed of sound is different in different media, such
as helium or water. Further evidence is that we don’t receive sound
signals that have come to our planet through outer space. The roars
and whooshes of Hollywood’s space ships are fun, but scientifically
wrong. !

We can also tell that sound waves consist of compressions and
expansions, rather than sideways vibrations like the shimmying of a
snake. Only compressional vibrations would be able to cause your
eardrums to vibrate in and out. Even for a very loud sound, the
compression is extremely weak; the increase or decrease compared
to normal atmospheric pressure is no more than a part per million.
Our ears are apparently very sensitive receivers!

Light waves

Entirely similar observations lead us to believe that light is a
wave, although the concept of light as a wave had a long and tortu-
ous history. It is interesting to note that Isaac Newton very influen-
tially advocated a contrary idea about light. The belief that matter
was made of atoms was stylish at the time among radical thinkers
(although there was no experimental evidence for their existence),
and it seemed logical to Newton that light as well should be made of
tiny particles, which he called corpuscles (Latin for “small objects”).
Newton’s triumphs in the science of mechanics, i.e., the study of
matter, brought him such great prestige that nobody bothered to
question his incorrect theory of light for 150 years. Omne persua-
sive proof that light is a wave is that according to Newton’s theory,
two intersecting beams of light should experience at least some dis-
ruption because of collisions between their corpuscles. Even if the

'Outer space is not a perfect vacuum, so it is possible for sounds waves to
travel through it. However, if we want to create a sound wave, we typically do
it by creating vibrations of a physical object, such as the sounding board of a
guitar, the reed of a saxophone, or a speaker cone. The lower the density of the
surrounding medium, the less efficiently the energy can be converted into sound
and carried away. An isolated tuning fork, left to vibrate in interstellar space,
would dissipate the energy of its vibration into internal heat at a rate many
orders of magnitude greater than the rate of sound emission into the nearly
perfect vacuum around it.
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corpuscles were extremely small, and collisions therefore very infre-
quent, at least some dimming should have been measurable. In fact,
very delicate experiments have shown that there is no dimming.

The wave theory of light was entirely successful up until the 20th
century, when it was discovered that not all the phenomena of light
could be explained with a pure wave theory. It is now believed that
both light and matter are made out of tiny chunks which have both
wave and particle properties. For now, we will content ourselves
with the wave theory of light, which is capable of explaining a great
many things, from cameras to rainbows.

If light is a wave, what is waving? What is the medium that
wiggles when a light wave goes by? It isn’t air. A vacuum is impen-
etrable to sound, but light from the stars travels happily through
zillions of miles of empty space. Light bulbs have no air inside them,
but that doesn’t prevent the light waves from leaving the filament.
For a long time, physicists assumed that there must be a mysterious
medium for light waves, and they called it the aether (not to be
confused with the chemical). Supposedly the aether existed every-
where in space, and was immune to vacuum pumps. The details of
the story are more fittingly reserved for later in this course, but the
end result was that a long series of experiments failed to detect any
evidence for the aether, and it is no longer believed to exist. Instead,
light can be explained as a wave pattern made up of electrical and
magnetic fields.

3.4 Periodic Waves

Period and frequency of a periodic wave

You choose a radio station by selecting a certain frequency. We
have already defined period and frequency for vibrations, but what
do they signify in the case of a wave? We can recycle our previous
definition simply by stating it in terms of the vibrations that the
wave causes as it passes a receiving instrument at a certain point
in space. For a sound wave, this receiver could be an eardrum or
a microphone. If the vibrations of the eardrum repeat themselves
over and over, i.e., are periodic, then we describe the sound wave
that caused them as periodic. Likewise we can define the period
and frequency of a wave in terms of the period and frequency of
the vibrations it causes. As another example, a periodic water wave
would be one that caused a rubber duck to bob in a periodic manner
as they passed by it.

The period of a sound wave correlates with our sensory impres-
sion of musical pitch. A high frequency (short period) is a high note.
The sounds that really define the musical notes of a song are only
the ones that are periodic. It is not possible to sing a non-periodic
sound like “sh” with a definite pitch.

Section 3.4

o/A graph of pressure ver-
sus time for a periodic sound
wave, the vowel “ah.”

p/A similar graph for a non-
periodic wave, “sh.”
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r/A water wave profile cre-
ated by a series of repeating
pulses.

The frequency of a light wave corresponds to color. Violet is the
high-frequency end of the rainbow, red the low-frequency end. A
color like brown that does not occur in a rainbow is not a periodic
light wave. Many phenomena that we do not normally think of as
light are actually just forms of light that are invisible because they
fall outside the range of frequencies our eyes can detect. Beyond the
red end of the visible rainbow, there are infrared and radio waves.
Past the violet end, we have ultraviolet, x-rays, and gamma rays.

Graphs of waves as a function of position

Some waves, light sound waves, are easy to study by placing a
detector at a certain location in space and studying the motion as
a function of time. The result is a graph whose horizontal axis is
time. With a water wave, on the other hand, it is simpler just to
look at the wave directly. This visual snapshot amounts to a graph
of the height of the water wave as a function of position. Any wave
can be represented in either way.

An easy way to visualize this is in terms of a strip chart recorder,
an obsolescing device consisting of a pen that wiggles back and forth
as a roll of paper is fed under it. It can be used to record a per-
son’s electrocardiogram, or seismic waves too small to be felt as a
noticeable earthquake but detectable by a seismometer. Taking the
seismometer as an example, the chart is essentially a record of the
ground’s wave motion as a function of time, but if the paper was set
to feed at the same velocity as the motion of an earthquake wave, it
would also be a full-scale representation of the profile of the actual
wave pattern itself. Assuming, as is usually the case, that the wave
velocity is a constant number regardless of the wave’s shape, know-
ing the wave motion as a function of time is equivalent to knowing
it as a function of position.

Wavelength

Any wave that is periodic will also display a repeating pattern
when graphed as a function of position. The distance spanned by
one repetition is referred to as one wavelength. The usual notation
for wavelength is A, the Greek letter lambda. Wavelength is to space
as period is to time.

Wave velocity related to frequency and wavelength

Suppose that we create a repetitive disturbance by kicking the
surface of a swimming pool. We are essentially making a series of
wave pulses. The wavelength is simply the distance a pulse is able to
travel before we make the next pulse. The distance between pulses
is A, and the time between pulses is the period, T, so the speed of
the wave is the distance divided by the time,

v=M\T.
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s / Wavelengths of linear and circular water waves.

This important and useful relationship is more commonly writ-
ten in terms of the frequency,

v=fA

Wavelength of radio waves example 5

> The speed of light is 3.0 x 108 m/s. What is the wavelength of
the radio waves emitted by KKJZ, a station whose frequency is
88.1 MHz?

> Solving for wavelength, we have
A=v/f
= (3.0 x 108 m/s)/(88.1 x 108 s~ 1)
=34 m

The size of a radio antenna is closely related to the wavelength of
the waves it is intended to receive. The match need not be exact
(since after all one antenna can receive more than one wave-
length!), but the ordinary “whip” antenna such as a car’s is 1/4
of a wavelength. An antenna optimized to receive KKJZ'’s signal
would have a length of 3.4 m/4 = 0.85 m.

The equation v = f defines a fixed relationship between any two
of the variables if the other is held fixed. The speed of radio waves
in air is almost exactly the same for all wavelengths and frequencies
(it is exactly the same if they are in a vacuum), so there is a fixed
relationship between their frequency and wavelength. Thus we can
say either “Are we on the same wavelength?” or “Are we on the
same frequency?”

A different example is the behavior of a wave that travels from
a region where the medium has one set of properties to an area

Section 3.4

u/A water wave traveling
into a region with a different
depth changes its wavelength.
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t/ Ultrasound, i.e., sound with fre-
quencies higher than the range
of human hearing, was used to
make this image of a fetus. The
resolution of the image is re-
lated to the wavelength, since
details smaller than about one
wavelength cannot be resolved.
High resolution therefore requires
a short wavelength, correspond-
ing to a high frequency.

where the medium behaves differently. The frequency is now fixed,
because otherwise the two portions of the wave would otherwise
get out of step, causing a kink or discontinuity at the boundary,
which would be unphysical. (A more careful argument is that a
kink or discontinuity would have infinite curvature, and waves tend
to flatten out their curvature. An infinite curvature would flatten
out infinitely fast, i.e., it could never occur in the first place.) Since
the frequency must stay the same, any change in the velocity that
results from the new medium must cause a change in wavelength.

The velocity of water waves depends on the depth of the water,
so based on A = v/f, we see that water waves that move into a
region of different depth must change their wavelength, as shown
in the figure on the left. This effect can be observed when ocean
waves come up to the shore. If the deceleration of the wave pattern
is sudden enough, the tip of the wave can curl over, resulting in a
breaking wave.

'A note on dispersive waves

The discussion of wave velocity given here is actually an oversimplifi-
cation for a wave whose velocity depends on its frequency and wave-
length. Such a wave is called a dispersive wave. Nearly all the waves
we deal with in this course are non-dispersive, but the issue becomes
important in book 6 of this series, where it is discussed in more detail in
optional section 4.2.

Sinusoidal waves

Sinusoidal waves are the most important special case of periodic
waves. In fact, many scientists and engineers would be uncomfort-
able with defining a waveform like the “ah” vowel sound as having
a definite frequency and wavelength, because they consider only
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sine waves to be pure examples of a certain frequency and wave-
lengths. Their bias is not unreasonable, since the French mathe-
matician Fourier showed that any periodic wave with frequency f
can be constructed as a superposition of sine waves with frequencies
fy 2f, 3f, ... In this sense, sine waves are the basic, pure building
blocks of all waves. (Fourier’s result so surprised the mathematical
community of France that he was ridiculed the first time he publicly
presented his theorem.)

However, what definition to use is a matter of utility. Our sense
of hearing perceives any two sounds having the same period as pos-
sessing the same pitch, regardless of whether they are sine waves
or not. This is undoubtedly because our ear-brain system evolved
to be able to interpret human speech and animal noises, which are
periodic but not sinusoidal. Our eyes, on the other hand, judge a
color as pure (belonging to the rainbow set of colors) only if it is a
sine wave.

Discussion Question

A Suppose we superimpose two sine waves with equal amplitudes
but slightly different frequencies, as shown in the figure. What will the
superposition look like? What would this sound like if they were sound
waves?

AVAVAVAVAVAVAVAVAVAVAVAVAVAV
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAY

3.5 The Doppler Effect

Figure v shows the wave pattern made by the tip of a vibrating
rod which is moving across the water. If the rod had been vibrating
in one place, we would have seen the familiar pattern of concentric
circles, all centered on the same point. But since the source of
the waves is moving, the wavelength is shortened on one side and
lengthened on the other. This is known as the Doppler effect.

Note that the velocity of the waves is a fixed property of the
medium, so for example the forward-going waves do not get an extra
boost in speed as would a material object like a bullet being shot
forward from an airplane.

We can also infer a change in frequency. Since the velocity is
constant, the equation v = f\ tells us that the change in wave-
length must be matched by an opposite change in frequency: higher
frequency for the waves emitted forward, and lower for the ones
emitted backward. The frequency Doppler effect is the reason for
the familiar dropping-pitch sound of a race car going by. As the car

v/ The pattern of waves made
by a point source moving to the
right across the water.  Note
the shorter wavelength of the
forward-emitted  waves  and
the longer wavelength of the
backward-going ones.
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approaches us, we hear a higher pitch, but after it passes us we hear
a frequency that is lower than normal.

The Doppler effect will also occur if the observer is moving but
the source is stationary. For instance, an observer moving toward a
stationary source will perceive one crest of the wave, and will then be
surrounded by the next crest sooner than she otherwise would have,
because she has moved toward it and hastened her encounter with
it. Roughly speaking, the Doppler effect depends only the relative
motion of the source and the observer, not on their absolute state
of motion (which is not a well-defined notion in physics) or on their
velocity relative to the medium.

Restricting ourselves to the case of a moving source, and to waves
emitted either directly along or directly against the direction of mo-
tion, we can easily calculate the wavelength, or equivalently the
frequency, of the Doppler-shifted waves. Let v be the velocity of
the waves, and v, the velocity of the source. The wavelength of the
forward-emitted waves is shortened by an amount v, equal to the
distance traveled by the source over the course of one period. Using
the definition f = 1/7T and the equation v = fA, we find for the
wavelength of the Doppler-shifted wave the equation

X:(l—%)/\

A similar equation can be used for the backward-emitted waves, but
with a plus sign rather than a minus sign.

Doppler-shifted sound from a race car example 6
> If a race car moves at a velocity of 50 m/s, and the velocity of
sound is 340 m/s, by what percentage are the wavelength and
frequency of its sound waves shifted for an observer lying along
its line of motion?

> For an observer whom the car is approaching, we find
1-25-085
v

so the shift in wavelength is 15%. Since the frequency is inversely
proportional to the wavelength for a fixed value of the speed of
sound, the frequency is shifted upward by

1/0.85 = 1.18,

i.e., a change of 18%. (For velocities that are small compared
to the wave velocities, the Doppler shifts of the wavelength and
frequency are about the same.)

Doppler shift of the light emitted by a race car example 7
> What is the percent shift in the wavelength of the light waves
emitted by a race car’s headlights?
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> Looking up the speed of light in the front of the book, v = 3.0 x
108 m/s, we find

1- % - 0.99999983 |
i.e., the percentage shift is only 0.000017%.

The second example shows that under ordinary earthbound cir-
cumstances, Doppler shifts of light are negligible because ordinary
things go so much slower than the speed of light. It’s a different
story, however, when it comes to stars and galaxies, and this leads
us to a story that has profound implications for our understanding
of the origin of the universe.

Doppler radar example 8
The first use of radar was by Britain during World War |l: anten-
nas on the ground sent radio waves up into the sky, and detected
the echoes when the waves were reflected from German planes.
Later, air forces wanted to mount radar antennas on airplanes,
but then there was a problem, because if an airplane wanted to
detect another airplane at a lower altitude, it would have to aim
its radio waves downward, and then it would get echoes from
the ground. The solution was the invention of Doppler radar, in
which echoes from the ground were differentiated from echoes
from other aircraft according to their Doppler shifts. A similar

technology is used by meteorologists to map out rainclouds with- w/ Example fSH A Eoppler
out being swamped by reflections from the ground, trees, and ir:%%ro';nage of Hurricane Katrina,
buildings. .

Optional topic: Doppler shifts of light

If Doppler shifts depend only on the relative motion of the source and
receiver, then there is no way for a person moving with the source and
another person moving with the receiver to determine who is moving
and who isn’t. Either can blame the Doppler shift entirely on the other’s
motion and claim to be at rest herself. This is entirely in agreement with
the principle stated originally by Galileo that all motion is relative.

On the other hand, a careful analysis of the Doppler shifts of water
or sound waves shows that it is only approximately true, at low speeds,
that the shifts just depend on the relative motion of the source and ob-
server. For instance, it is possible for a jet plane to keep up with its own
sound waves, so that the sound waves appear to stand still to the pilot
of the plane. The pilot then knows she is moving at exactly the speed
of sound. The reason this doesn’t disprove the relativity of motion is
that the pilot is not really determining her absolute motion but rather her
motion relative to the air, which is the medium of the sound waves.

Einstein realized that this solved the problem for sound or water
waves, but would not salvage the principle of relative motion in the case
of light waves, since light is not a vibration of any physical medium such
as water or air. Beginning by imagining what a beam of light would
look like to a person riding a motorcycle alongside it, Einstein even-
tually came up with a radical new way of describing the universe, in
which space and time are distorted as measured by observers in differ-
ent states of motion. As a consequence of this Theory of Relativity, he
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x/The galaxy M51. Under
high magnification, the milky
clouds reveal themselves to be
composed of trillions of stars.

showed that light waves would have Doppler shifts that would exactly,
not just approximately, depend only on the relative motion of the source
and receiver.

The Big bang

As soon as astronomers began looking at the sky through tele-
scopes, they began noticing certain objects that looked like clouds
in deep space. The fact that they looked the same night after night
meant that they were beyond the earth’s atmosphere. Not know-
ing what they really were, but wanting to sound official, they called
them “nebulae,” a Latin word meaning “clouds” but sounding more
impressive. In the early 20th century, astronomers realized that al-
though some really were clouds of gas (e.g., the middle “star” of
Orion’s sword, which is visibly fuzzy even to the naked eye when
conditions are good), others were what we now call galaxies: virtual
island universes consisting of trillions of stars (for example the An-
dromeda Galaxy, which is visible as a fuzzy patch through binoc-
ulars). Three hundred years after Galileo had resolved the Milky
Way into individual stars through his telescope, astronomers real-
ized that the universe is made of galaxies of stars, and the Milky
Way is simply the visible part of the flat disk of our own galaxy,
seen from inside.

This opened up the scientific study of cosmology, the structure
and history of the universe as a whole, a field that had not been
seriously attacked since the days of Newton. Newton had realized
that if gravity was always attractive, never repulsive, the universe
would have a tendency to collapse. His solution to the problem was
to posit a universe that was infinite and uniformly populated with
matter, so that it would have no geometrical center. The gravita-
tional forces in such a universe would always tend to cancel out by
symmetry, so there would be no collapse. By the 20th century, the
belief in an unchanging and infinite universe had become conven-
tional wisdom in science, partly as a reaction against the time that
had been wasted trying to find explanations of ancient geological
phenomena based on catastrophes suggested by biblical events like
Noah’s flood.

In the 1920’s astronomer Edwin Hubble began studying the
Doppler shifts of the light emitted by galaxies. A former college
football player with a serious nicotine addiction, Hubble did not
set out to change our image of the beginning of the universe. His
autobiography seldom even mentions the cosmological discovery for
which he is now remembered. When astronomers began to study the
Doppler shifts of galaxies, they expected that each galaxy’s direction
and velocity of motion would be essentially random. Some would be
approaching us, and their light would therefore be Doppler-shifted
to the blue end of the spectrum, while an equal number would be
expected to have red shifts. What Hubble discovered instead was
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that except for a few very nearby ones, all the galaxies had red
shifts, indicating that they were receding from us at a hefty frac-
tion of the speed of light. Not only that, but the ones farther away
were receding more quickly. The speeds were directly proportional
to their distance from us.

Did this mean that the earth (or at least our galaxy) was the
center of the universe? No, because Doppler shifts of light only
depend on the relative motion of the source and the observer. If
we see a distant galaxy moving away from us at 10% of the speed
of light, we can be assured that the astronomers who live in that
galaxy will see ours receding from them at the same speed in the
opposite direction. The whole universe can be envisioned as a rising
loaf of raisin bread. As the bread expands, there is more and more
space between the raisins. The farther apart two raisins are, the
greater the speed with which they move apart.

Extrapolating backward in time using the known laws of physics,
the universe must have been denser and denser at earlier and earlier
times. At some point, it must have been extremely dense and hot,
and we can even detect the radiation from this early fireball, in the
form of microwave radiation that permeates space. The phrase Big
Bang was originally coined by the doubters of the theory to make it
sound ridiculous, but it stuck, and today essentially all astronomers
accept the Big Bang theory based on the very direct evidence of the
red shifts and the cosmic microwave background radiation.

What the Big bang is not

Finally it should be noted what the Big Bang theory is not. It is
not an explanation of why the universe exists. Such questions belong
to the realm of religion, not science. Science can find ever simpler
and ever more fundamental explanations for a variety of phenom-
ena, but ultimately science takes the universe as it is according to
observations.

Furthermore, there is an unfortunate tendency, even among many
scientists, to speak of the Big Bang theory as a description of the
very first event in the universe, which caused everything after it.
Although it is true that time may have had a beginning (Einstein’s
theory of general relativity admits such a possibility), the methods
of science can only work within a certain range of conditions such
as temperature and density. Beyond a temperature of about 10°
degrees C, the random thermal motion of subatomic particles be-
comes so rapid that its velocity is comparable to the speed of light.
Early enough in the history of the universe, when these temperatures
existed, Newtonian physics becomes less accurate, and we must de-
scribe nature using the more general description given by Einstein’s
theory of relativity, which encompasses Newtonian physics as a spe-
cial case. At even higher temperatures, beyond about 1033 degrees,
physicists know that Einstein’s theory as well begins to fall apart,

y/How do astronomers know
what mixture of wavelengths a
star emitted originally, so that
they can tell how much the
Doppler shift was? This image
(obtained by the author with
equipment costing about $5, and
no telescope) shows the mixture
of colors emitted by the star
Sirius. (If you have the book in
black and white, blue is on the left
and red on the right.) The star
appears white or bluish-white to
the eye, but any light looks white
if it contains roughly an equal
mixture of the rainbow colors,
i.e., of all the pure sinusoidal
waves with wavelengths lying in
the visible range. Note the black
“gap teeth.” These are the fin-
gerprint of hydrogen in the outer
atmosphere of Sirius. These
wavelengths are selectively ab-
sorbed by hydrogen. Sirius is in
our own galaxy, but similar stars
in other galaxies would have
the whole pattern shifted toward
the red end, indicating they are
moving away from us.

= #‘

Mount

z/The telescope at
Wilson used by Hubble.
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aa/Shock waves from by
the X-15 rocket plane, flying at
3.5 times the speed of sound.

ab/This fighter jet has just
accelerated past the speed of

sound. The sudden decom-
pression of the air causes water
droplets to condense, forming a
cloud.

but we don’t know how to construct the even more general theory
of nature that would work at those temperatures. No matter how
far physics progresses, we will never be able to describe nature at
infinitely high temperatures, since there is a limit to the temper-
atures we can explore by experiment and observation in order to
guide us to the right theory. We are confident that we understand
the basic physics involved in the evolution of the universe starting a
few minutes after the Big Bang, and we may be able to push back to
milliseconds or microseconds after it, but we cannot use the methods
of science to deal with the beginning of time itself.

Discussion Questions

A If an airplane travels at exactly the speed of sound, what would be
the wavelength of the forward-emitted part of the sound waves it emitted?
How should this be interpreted, and what would actually happen? What
happens if it's going faster than the speed of sound? Can you use this to
explain what you see in figures aa and ab?

B  If bullets go slower than the speed of sound, why can a supersonic
fighter plane catch up to its own sound, but not to its own bullets?

C If someone inside a plane is talking to you, should their speech be
Doppler shifted?
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Summary
Selected Vocabulary

superposition . . the adding together of waves that overlap with
each other

medium . . ... a physical substance whose vibrations consti-
tute a wave

wavelength . . . . the distance in space between repetitions of a
periodic wave

Doppler effect . . the change in a wave’s frequency and wave-

length due to the motion of the source or the
observer or both

Notation
Ao wavelength (Greek letter lambda)

Summary

Wave motion differs in three important ways from the motion of
material objects:

(1) Waves obey the principle of superposition. When two waves
collide, they simply add together.

(2) The medium is not transported along with the wave. The
motion of any given point in the medium is a vibration about its
equilibrium location, not a steady forward motion.

(3) The velocity of a wave depends on the medium, not on the
amount of energy in the wave. (For some types of waves, notably
water waves, the velocity may also depend on the shape of the wave.)

Sound waves consist of increases and decreases (typically very
small ones) in the density of the air. Light is a wave, but it is a
vibration of electric and magnetic fields, not of any physical medium.
Light can travel through a vacuum.

A periodic wave is one that creates a periodic motion in a receiver
as it passes it. Such a wave has a well-defined period and frequency,
and it will also have a wavelength, which is the distance in space
between repetitions of the wave pattern. The velocity, frequency,
and wavelength of a periodic wave are related by the equation

v=fA.

A wave emitted by a moving source will be shifted in wavelength
and frequency. The shifted wavelength is given by the equation

N=(1-2)a
v
where v is the velocity of the waves and vy is the velocity of the
source, taken to be positive or negative so as to produce a Doppler-
lengthened wavelength if the source is receding and a Doppler-
shortened one if it approaches. A similar shift occurs if the observer

Summary
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is moving, and in general the Doppler shift depends approximately
only on the relative motion of the source and observer if their ve-
locities are both small compared to the waves’ velocity. (This is not
just approximately but exactly true for light waves, and this fact
forms the basis of Einstein’s Theory of Relativity.)
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 The following is a graph of the height of a water wave as a
function of position, at a certain moment in time.

Trace this graph onto another piece of paper, and then sketch below
it the corresponding graphs that would be obtained if

(a) the amplitude and frequency were doubled while the velocity
remained the same;

(b) the frequency and velocity were both doubled while the ampli-
tude remained unchanged;

(c) the wavelength and amplitude were reduced by a factor of three
while the velocity was doubled.

[Problem by Arnold Arons.]

2 (a) The graph shows the height of a water wave pulse as a J\ﬁ

function of position. Draw a graph of height as a function of time
for a specific point on the water. Assume the pulse is traveling to Problem 2.
the right.

(b) Repeat part a, but assume the pulse is traveling to the left.

(c) Now assume the original graph was of height as a function of
time, and draw a graph of height as a function of position, assuming
the pulse is traveling to the right.

(d) Repeat part ¢, but assume the pulse is traveling to the left.
[Problem by Arnold Arons.]

3 The figure shows one wavelength of a steady sinusoidal wave
traveling to the right along a string. Define a coordinate system
in which the positive x axis points to the right and the positive y
axis up, such that the flattened string would have y = 0. Copy Problem 3.
the figure, and label with y = 0 all the appropriate parts of the
string. Similarly, label with v = 0 all parts of the string whose
velocities are zero, and with a = 0 all parts whose accelerations
are zero. There is more than one point whose velocity is of the
greatest magnitude. Pick one of these, and indicate the direction of
its velocity vector. Do the same for a point having the maximum
magnitude of acceleration.
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[Problem by Arnold Arons.]

4 Find an equation for the relationship between the Doppler-
shifted frequency of a wave and the frequency of the original wave,
for the case of a stationary observer and a source moving directly
toward or away from the observer.

5 Suggest a quantitative experiment to look for any deviation
from the principle of superposition for surface waves in water. Make
it simple and practical.

6 The musical note middle C has a frequency of 262 Hz. What
are its period and wavelength? v

7 Singing that is off-pitch by more than about 1% sounds bad.
How fast would a singer have to be moving relative to a the rest of
a band to make this much of a change in pitch due to the Doppler
effect?

8 In section 3.2, we saw that the speed of waves on a string
depends on the ratio of T'/p, i.e., the speed of the wave is greater if
the string is under more tension, and less if it has more inertia. This
is true in general: the speed of a mechanical wave always depends
on the medium’s inertia in relation to the restoring force (tension,
stiffness, resistance to compression,...) Based on these ideas, explain
why the speed of sound in a gas depends strongly on temperature,
while the speed of sounds in liquids and solids does not.
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A cross-sectional view of a human body, showing the vocal tract.

Chapter 4
Bounded Waves

Speech is what separates humans most decisively from animals. No
other species can master syntax, and even though chimpanzees can
learn a vocabulary of hand signs, there is an unmistakable difference
between a human infant and a baby chimp: starting from birth, the
human experiments with the production of complex speech sounds.

Since speech sounds are instinctive for us, we seldom think about
them consciously. How do we do control sound waves so skillfully?
Mostly we do it by changing the shape of a connected set of hollow
cavities in our chest, throat, and head. Somehow by moving the
boundaries of this space in and out, we can produce all the vowel
sounds. Up until now, we have been studying only those properties
of waves that can be understood as if they existed in an infinite,
open space. In this chapter we address what happens when a wave is
confined within a certain space, or when a wave pattern encounters
the boundary between two different media, as when a light wave
moving through air encounters a glass windowpane.
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a / A diver photographed this fish,
and its reflection, from underwa-
ter. The reflection is the one on
top, and is formed by light waves
that went up to the surface of
the water, but were then reflected
back down into the water.

4.1 Reflection, Transmission, and Absorption

Reflection and transmission

Sound waves can echo back from a cliff, and light waves are
reflected from the surface of a pond. We use the word reflection,
normally applied only to light waves in ordinary speech, to describe
any such case of a wave rebounding from a barrier. Figure b shows
a circular water wave being reflected from a straight wall. In this
chapter, we will concentrate mainly on reflection of waves that move
in one dimension, as in figure c.

Wave reflection does not surprise us. After all, a material object
such as a rubber ball would bounce back in the same way. But waves
are not objects, and there are some surprises in store.

First, only part of the wave is usually reflected. Looking out
through a window, we see light waves that passed through it, but a
person standing outside would also be able to see her reflection in
the glass. A light wave that strikes the glass is partly reflected and
partly transmitted (passed) by the glass. The energy of the original
wave is split between the two. This is different from the behavior of
the rubber ball, which must go one way or the other, not both.

Second, consider what you see if you are swimming underwater
and you look up at the surface. You see your own reflection. This
is utterly counterintuitive, since we would expect the light waves to
burst forth to freedom in the wide-open air. A material projectile
shot up toward the surface would never rebound from the water-air
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boundary! Figure a shows a similar example.

What is it about the difference between two media that causes
waves to be partly reflected at the boundary between them? Is
it their density? Their chemical composition? Ultimately all that
matters is the speed of the wave in the two media. A wave is partially
reflected and partially transmitted at the boundary between media in
which it has different speeds. For example, the speed of light waves
in window glass is about 30% less than in air, which explains why
windows always make reflections. Figures d/1 and 2 show examples
of wave pulses being reflected at the boundary between two coil
springs of different weights, in which the wave speed is different.

Reflections such as b and ¢, where a wave encounters a massive
fixed object, can usually be understood on the same basis as cases
like d/1 and 2 later in his section, where two media meet. Example
¢, for instance, is like a more extreme version of example d/1. If the
heavy coil spring in d/1 was made heavier and heavier, it would end
up acting like the fixed wall to which the light spring in ¢ has been
attached.

self-check A

In figure c, the reflected pulse is upside-down, but its depth is just as
big as the original pulse’s height. How does the energy of the reflected
pulse compare with that of the original? > Answer, p. 98

Fish have internal ears. example 1
Why don’t fish have ear-holes? The speed of sound waves in
a fish’s body is not much different from their speed in water, so
sound waves are not strongly reflected from a fish’s skin. They
pass right through its body, so fish can have internal ears.

Whale songs traveling long distances example 2

Sound waves travel at drastically different speeds through rock,
water, and air. Whale songs are thus strongly reflected at both
the bottom and the surface. The sound waves can travel hun-
dreds of miles, bouncing repeatedly between the bottom and the
surface, and still be detectable. Sadly, noise pollution from ships
has nearly shut down this cetacean version of the internet.

Long-distance radio communication. example 3
Radio communication can occur between stations on opposite
sides of the planet. The mechanism is similar to the one ex-
plained in example 2, but the three media involved are the earth,
the atmosphere, and the ionosphere.

self-check B

Sonar is a method for ships and submarines to detect each other by
producing sound waves and listening for echoes. What properties would
an underwater object have to have in order to be invisible to sonar? >
Answer, p. 98

The use of the word “reflection” naturally brings to mind the cre-

b/ Circular water waves are
reflected from a boundary on the
left.

c/A wave on a spring, ini-
tially traveling to the left, is
reflected from the fixed end.
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ation of an image by a mirror, but this might be confusing, because
we do not normally refer to “reflection” when we look at surfaces
that are not shiny. Nevertheless, reflection is how we see the surfaces
of all objects, not just polished ones. When we look at a sidewalk,
for example, we are actually seeing the reflecting of the sun from
the concrete. The reason we don’t see an image of the sun at our
feet is simply that the rough surface blurs the image so drastically.
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d/1. A wave in the lighter spring, where the wave speed is greater,
travels to the left and is then partly reflected and partly transmitted at the
boundary with the heavier coil spring, which has a lower wave speed.
The reflection is inverted. 2. A wave moving to the right in the heavier
spring is partly reflected at the boundary with the lighter spring. The
reflection is uninverted.
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Inverted and uninverted reflections

Notice how the pulse reflected back to the right in example d/1
comes back upside-down, whereas the one reflected back to the left
in 2 returns in its original upright form. This is true for other waves
as well. In general, there are two possible types of reflections, a
reflection back into a faster medium and a reflection back into a
slower medium. One type will always be an inverting reflection and
one noninverting.

It’s important to realize that when we discuss inverted and un-
inverted reflections on a string, we are talking about whether the
wave is flipped across the direction of motion (i.e., upside-down in
these drawings). The reflected pulse will always be reversed front
to back, as shown in figure e. This is because it is traveling in the
other direction. The leading edge of the pulse is what gets reflected
first, so it is still ahead when it starts back to the left — it’s just
that “ahead” is now in the opposite direction.

Absorption

So far we have tacitly assumed that wave energy remains as wave
energy, and is not converted to any other form. If this was true, then
the world would become more and more full of sound waves, which
could never escape into the vacuum of outer space. In reality, any
mechanical wave consists of a traveling pattern of vibrations of some
physical medium, and vibrations of matter always produce heat, as
when you bend a coat-hangar back and forth and it becomes hot.
We can thus expect that in mechanical waves such as water waves,
sound waves, or waves on a string, the wave energy will gradually
be converted into heat. This is referred to as absorption.

The wave suffers a decrease in amplitude, as shown in figure f.
The decrease in amplitude amounts to the same fractional change
for each unit of distance covered. For example, if a wave decreases
from amplitude 2 to amplitude 1 over a distance of 1 meter, then
after traveling another meter it will have an amplitude of 1/2. That
is, the reduction in amplitude is exponential. This can be proven
as follows. By the principle of superposition, we know that a wave
of amplitude 2 must behave like the superposition of two identical
waves of amplitude 1. If a single amplitude-1 wave would die down to
amplitude 1/2 over a certain distance, then two amplitude-1 waves
superposed on top of one another to make amplitude 1+ 1 = 2 must
die down to amplitude 1/2 4 1/2 =1 over the same distance.

self-check C
As a wave undergoes absorption, it loses energy. Does this mean that
it slows down? > Answer, p. 98

In many cases, this frictional heating effect is quite weak. Sound
waves in air, for instance, dissipate into heat extremely slowly, and
the sound of church music in a cathedral may reverberate for as much

2 —_—
«~— —_
~—"\
e/1. An uninverted reflec-

tion. The reflected pulse is
reversed front to back, but is
not upside-down. 2. An inverted
reflection. The reflected pulse is
reversed both front to back and
top to bottom.

—_—

—_— N\

f/A pulse traveling through
a highly absorptive medium.
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g/ X-rays are light waves with a
very high frequency. They are
absorbed strongly by bones, but
weakly by flesh.

as 3 or 4 seconds before it becomes inaudible. During this time it
has traveled over a kilometer! Even this very gradual dissipation
of energy occurs mostly as heating of the church’s walls and by the
leaking of sound to the outside (where it will eventually end up as
heat). Under the right conditions (humid air and low frequency), a
sound wave in a straight pipe could theoretically travel hundreds of
kilometers before being noticeably attenuated.

In general, the absorption of mechanical waves depends a great
deal on the chemical composition and microscopic structure of the
medium. Ripples on the surface of antifreeze, for instance, die out
extremely rapidly compared to ripples on water. For sound waves
and surface waves in liquids and gases, what matters is the viscosity
of the substance, i.e., whether it flows easily like water or mercury
or more sluggishly like molasses or antifreeze. This explains why
our intuitive expectation of strong absorption of sound in water is
incorrect. Water is a very weak absorber of sound (viz. whale songs
and sonar), and our incorrect intuition arises from focusing on the
wrong property of the substance: water’s high density, which is
irrelevant, rather than its low viscosity, which is what matters.

Light is an interesting case, since although it can travel through
matter, it is not itself a vibration of any material substance. Thus
we can look at the star Sirius, 10'* km away from us, and be as-
sured that none of its light was absorbed in the vacuum of outer
space during its 9-year journey to us. The Hubble Space Telescope
routinely observes light that has been on its way to us since the
early history of the universe, billions of years ago. Of course the
energy of light can be dissipated if it does pass through matter (and
the light from distant galaxies is often absorbed if there happen to
be clouds of gas or dust in between).

Soundproofing example 4
Typical amateur musicians setting out to soundproof their garages
tend to think that they should simply cover the walls with the
densest possible substance. In fact, sound is not absorbed very
strongly even by passing through several inches of wood. A better
strategy for soundproofing is to create a sandwich of alternating
layers of materials in which the speed of sound is very different,
to encourage reflection.

The classic design is alternating layers of fiberglass and plywood.
The speed of sound in plywood is very high, due to its stiffness,
while its speed in fiberglass is essentially the same as its speed
in air. Both materials are fairly good sound absorbers, but sound
waves passing through a few inches of them are still not going
to be absorbed sufficiently. The point of combining them is that
a sound wave that tries to get out will be strongly reflected at
each of the fiberglass-plywood boundaries, and will bounce back
and forth many times like a ping pong ball. Due to all the back-
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and-forth motion, the sound may end up traveling a total distance
equal to ten times the actual thickness of the soundproofing be-
fore it escapes. This is the equivalent of having ten times the
thickness of sound-absorbing material.

The swim bladder example 5

The swim bladder of a fish, which was first discussed in home-
work problem 2 in chapter 2, is often located right next to the
fish’s ear. As discussed in example 1 on page 75, the fish’s body
is nearly transparent to sound, so it’s actually difficult to get any
of the sound wave energy to deposit itself in the fish so that the
fish can hear it! The physics here is almost exactly the same as
the physics of example 4 above, with the gas-filled swim bladder
playing the role of the low-density material.

Radio transmission example 6
A radio transmitting station, such as a commercial station or an
amateur “ham” radio station, must have a length of wire or cable
connecting the amplifier to the antenna. The cable and the an-
tenna act as two different media for radio waves, and there will
therefore be partial reflection of the waves as they come from the
cable to the antenna. If the waves bounce back and forth many
times between the amplifier and the antenna, a great deal of their
energy will be absorbed. There are two ways to attack the prob-
lem. One possibility is to design the antenna so that the speed of
the waves in it is as close as possible to the speed of the waves
in the cable; this minimizes the amount of reflection. The other
method is to connect the amplifier to the antenna using a type
of wire or cable that does not strongly absorb the waves. Partial
reflection then becomes irrelevant, since all the wave energy will
eventually exit through the antenna.

Discussion Question

A A sound wave that underwent a pressure-inverting reflection would
have its compressions converted to expansions and vice versa. How
would its energy and frequency compare with those of the original sound?
Would it sound any different? What happens if you swap the two wires
where they connect to a stereo speaker, resulting in waves that vibrate in
the opposite way?

Section 4.1  Reflection, Transmission, and Absorption

79



WY
2 — —_—

h/1. A change in frequency
without a change in wavelength
would produce a discontinuity in
the wave. 2. A simple change in
wavelength without a reflection
would result in a sharp kink in the
wave.

4.2 % Quantitative Treatment of Reflection

In this optional section we analyze the reasons why reflections occur
at a speed-changing boundary, predict quantitatively the intensities
of reflection and transmission, and discuss how to predict for any
type of wave which reflections are inverting and which are nonin-
verting. The gory details are likely to be of interest mainly to stu-
dents with concentrations in the physical sciences, but all readers
are encouraged at least to skim the first two subsections for physical
insight.

Why reflection occurs

To understand the fundamental reasons for what does occur at
the boundary between media, let’s first discuss what doesn’t happen.
For the sake of concreteness, consider a sinusoidal wave on a string.
If the wave progresses from a heavier portion of the string, in which
its velocity is low, to a lighter-weight part, in which it is high, then
the equation v = fA tells us that it must change its frequency, or
its wavelength, or both. If only the frequency changed, then the
parts of the wave in the two different portions of the string would
quickly get out of step with each other, producing a discontinuity in
the wave, h/1. This is unphysical, so we know that the wavelength
must change while the frequency remains constant, 2.

But there is still something unphysical about figure 2. The sud-
den change in the shape of the wave has resulted in a sharp kink
at the boundary. This can’t really happen, because the medium
tends to accelerate in such a way as to eliminate curvature. A sharp
kink corresponds to an infinite curvature at one point, which would
produce an infinite acceleration, which would not be consistent with
the smooth pattern of wave motion envisioned in figure 2. Waves
can have kinks, but not stationary kinks.

We conclude that without positing partial reflection of the wave,
we cannot simultaneously satisfy the requirements of (1) continuity
of the wave, and (2) no sudden changes in the slope of the wave.
(The student who has studied calculus will recognize this as amount-
ing to an assumption that both the wave and its derivative are con-
tinuous functions.)

Does this amount to a proof that reflection occurs? Not quite.
We have only proven that certain types of wave motion are not
valid solutions. In the following subsection, we prove that a valid
solution can always be found in which a reflection occurs. Now in
physics, we normally assume (but seldom prove formally) that the
equations of motion have a unique solution, since otherwise a given
set of initial conditions could lead to different behavior later on,
but the Newtonian universe is supposed to be deterministic. Since
the solution must be unique, and we derive below a valid solution
involving a reflected pulse, we will have ended up with what amounts
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to a proof of reflection.

Intensity of reflection

We will now show, in the case of waves on a string, that it is pos-
sible to satisfy the physical requirements given above by construct-
ing a reflected wave, and as a bonus this will produce an equation
for the proportions of reflection and transmission and a prediction
as to which conditions will lead to inverted and which to uninverted
reflection. We assume only that the principle of superposition holds,
which is a good approximations for waves on a string of sufficiently
small amplitude.

Let the unknown amplitudes of the reflected and transmitted
waves be R and T, respectively. An inverted reflection would be
represented by a negative value of R. We can without loss of gen-
erality take the incident (original) wave to have unit amplitude.
Superposition tells us that if, for instance, the incident wave had
double this amplitude, we could immediately find a corresponding
solution simply by doubling R and T

Just to the left of the boundary, the height of the wave is given
by the height 1 of the incident wave, plus the height R of the part
of the reflected wave that has just been created and begun heading
back, for a total height of 1+ R. On the right side immediately next
to the boundary, the transmitted wave has a height T'. To avoid a
discontinuity, we must have

1+R=T

Next we turn to the requirement of equal slopes on both sides of
the boundary. Let the slope of the incoming wave be s immediately
to the left of the junction. If the wave was 100% reflected, and
without inversion, then the slope of the reflected wave would be —s,
since the wave has been reversed in direction. In general, the slope
of the reflected wave equals —sR, and the slopes of the superposed
waves on the left side add up to s — sR. On the right, the slope
depends on the amplitude, T, but is also changed by the stretching
or compression of the wave due to the change in speed. If, for
example, the wave speed is twice as great on the right side, then
the slope is cut in half by this effect. The slope on the right is
therefore s(vy/v2)T, where v; is the velocity in the original medium
and ve the velocity in the new medium. Equality of slopes gives
s —sR = s(v1/v2)T, or

1-R="27
(%)

Solving the two equations for the unknowns R and T gives

— 2
_r-u and T = b2
vg + U1 Vg + U1
Section 4.2
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i/A pulse being partially re-
flected and partially transmitted
at the boundary between two
strings in which the speed of
waves is different. The top
drawing shows the pulse heading
to the right, toward the heavier
string. For clarity, all but the first
and last drawings are schematic.
Once the reflected pulse begins
to emerge from the boundary,
it adds together with the trailing
parts of the incident pulse. Their
sum, shown as a wider line, is
what is actually observed.
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j/ A disturbance in
traffic.

freeway

k/In the mirror image, the
areas of positive excess traffic
density are still positive, but
the velocities of the cars have
all been reversed, so areas of
positive excess velocity have
been turned into negative ones.

The first equation shows that there is no reflection unless the two
wave speeds are different, and that the reflection is inverted in re-
flection back into a fast medium.

The energies of the transmitted and reflected wavers always add
up to the same as the energy of the original wave. There is never
any abrupt loss (or gain) in energy when a wave crosses a bound-
ary. (Conversion of wave energy to heat occurs for many types of
waves, but it occurs throughout the medium.) The equation for
T, surprisingly, allows the amplitude of the transmitted wave to be
greater than 1, i.e., greater than that of the incident wave. This
does not violate conservation of energy, because this occurs when
the second string is less massive, reducing its kinetic energy, and the
transmitted pulse is broader and less strongly curved, which lessens
its potential energy.

Inverted and uninverted reflections in general

For waves on a string, reflections back into a faster medium are
inverted, while those back into a slower medium are uninverted. Is
this true for all types of waves? The rather subtle answer is that it
depends on what property of the wave you are discussing.

Let’s start by considering wave disturbances of freeway traffic.
Anyone who has driven frequently on crowded freeways has observed
the phenomenon in which one driver taps the brakes, starting a chain
reaction that travels backward down the freeway as each person in
turn exercises caution in order to avoid rear-ending anyone. The
reason why this type of wave is relevant is that it gives a simple,
easily visualized example of our description of a wave depends on
which aspect of the wave we have in mind. In steadily flowing free-
way traffic, both the density of cars and their velocity are constant
all along the road. Since there is no disturbance in this pattern of
constant velocity and density, we say that there is no wave. Now if
a wave is touched off by a person tapping the brakes, we can either
describe it as a region of high density or as a region of decreasing
velocity.

The freeway traffic wave is in fact a good model of a sound wave,
and a sound wave can likewise be described either by the density
(or pressure) of the air or by its speed. Likewise many other types
of waves can be described by either of two functions, one of which
is often the derivative of the other with respect to position.

Now let’s consider reflections. If we observe the freeway wave in
a mirror, the high-density area will still appear high in density, but
velocity in the opposite direction will now be described by a neg-
ative number. A person observing the mirror image will draw the
same density graph, but the velocity graph will be flipped across the
x axis, and its original region of negative slope will now have posi-
tive slope. Although I don’t know any physical situation that would
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correspond to the reflection of a traffic wave, we can immediately ap-
ply the same reasoning to sound waves, which often do get reflected,
and determine that a reflection can either be density-inverting and
velocity-noninverting or density-noninverting and velocity-inverting.

This same type of situation will occur over and over as one en-
counters new types of waves, and to apply the analogy we need
only determine which quantities, like velocity, become negated in a
mirror image and which, like density, stay the same.

A light wave, for instance consists of a traveling pattern of elec-
tric and magnetic fields. All you need to know in order to analyze the
reflection of light waves is how electric and magnetic fields behave
under reflection; you don’t need to know any of the detailed physics
of electricity and magnetism. An electric field can be detected, for
example, by the way one’s hair stands on end. The direction of
the hair indicates the direction of the electric field. In a mirror im-
age, the hair points the other way, so the electric field is apparently
reversed in a mirror image. The behavior of magnetic fields, how-
ever, is a little tricky. The magnetic properties of a bar magnet,
for instance, are caused by the aligned rotation of the outermost
orbiting electrons of the atoms. In a mirror image, the direction of
rotation is reversed, say from clockwise to counterclockwise, and so
the magnetic field is reversed twice: once simply because the whole
picture is flipped and once because of the reversed rotation of the
electrons. In other words, magnetic fields do not reverse themselves
in a mirror image. We can thus predict that there will be two pos-
sible types of reflection of light waves. In one, the electric field is
inverted and the magnetic field uninverted. In the other, the electric
field is uninverted and the magnetic field inverted.

4.3 Interference Effects

If you look at the front of a pair of high-quality binoculars, you
will notice a greenish-blue coating on the lenses. This is advertised
as a coating to prevent reflection. Now reflection is clearly undesir-
able — we want the light to go in the binoculars — but so far I've
described reflection as an unalterable fact of nature, depending only
on the properties of the two wave media. The coating can’t change
the speed of light in air or in glass, so how can it work? The key is
that the coating itself is a wave medium. In other words, we have
a three-layer sandwich of materials: air, coating, and glass. We will
analyze the way the coating works, not because optical coatings are
an important part of your education but because it provides a good
example of the general phenomenon of wave interference effects.

There are two different interfaces between media: an air-coating
boundary and a coating-glass boundary. Partial reflection and par-
tial transmission will occur at each boundary. For ease of visual-
ization let’s start by considering an equivalent system consisting of

Section 4.3

I/ Seen from this angle, the
optical coating on the lenses of
these binoculars appears purple
and green. (The color varies
depending on the angle from
which the coating is viewed, and
the angle varies across the faces
of the lenses because of their
curvature.)
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One reflection is

displays

three dissimilar pieces of string tied together, and a wave pattern
consisting initially of a single pulse. Figure m/1 shows the incident
pulse moving through the heavy rope, in which its velocity is low.
When it encounters the lighter-weight rope in the middle, a faster
medium, it is partially reflected and partially transmitted. (The
transmitted pulse is bigger, but nevertheless has only part of the
original energy.) The pulse transmitted by the first interface is then
partially reflected and partially transmitted by the second bound-
ary, 3. In figure 4, two pulses are on the way back out to the left,
and a single pulse is heading off to the right. (There is still a weak
pulse caught between the two boundaries, and this will rattle back
and forth, rapidly getting too weak to detect as it leaks energy to
the outside with each partial reflection.)

Note how, of the two reflected pulses in 4, one is inverted and
one uninverted. One underwent reflection at the first boundary (a
reflection back into a slower medium is uninverted), but the other
was reflected at the second boundary (reflection back into a faster
medium is inverted).

Now let’s imagine what would have happened if the incoming
wave pattern had been a long sinusoidal wave train instead of a
single pulse. The first two waves to reemerge on the left could be
in phase, n/1, or out of phase, 2, or anywhere in between. The
amount of lag between them depends entirely on the width of the
middle segment of string. If we choose the width of the middle string
segment correctly, then we can arrange for destructive interference
to occur, 2, with cancellation resulting in a very weak reflected wave.

This whole analysis applies directly to our original case of optical
coatings. Visible light from most sources does consist of a stream of
short sinusoidal wave-trains such as the ones drawn above. The only
real difference between the waves-on-a-rope example and the case of
an optical coating is that the first and third media are air and glass,
in which light does not have the same speed. However, the general
result is the same as long as the air and the glass have light-wave
speeds that either both greater than the coating’s or both less than
the coating’s.

The business of optical coatings turns out to be a very arcane
one, with a plethora of trade secrets and “black magic” techniques
handed down from master to apprentice. Nevertheless, the ideas
you have learned about waves in general are sufficient to allow you
to come to some definite conclusions without any further technical
knowledge. The self-check and discussion questions will direct you
along these lines of thought.

The example of an optical coating was typical of a wide variety
of wave interference effects. With a little guidance, you are now
ready to figure out for yourself other examples such as the rainbow
pattern made by a compact disc, a layer of oil on a puddle, or a
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soap bubble.

self-check D

1. Color corresponds to wavelength of light waves. Is it possible to
choose a thickness for an optical coating that will produce destructive
interference for all colors of light?

2. How can you explain the rainbow colors on the soap bubble in figure
0? > Answer, p. 98

Discussion Questions

A Is it possible to get complete destructive interference in an optical
coating, at least for light of one specific wavelength?

B Sunlight consists of sinusoidal wave-trains containing on the order
of a hundred cycles back-to-back, for a length of something like a tenth of
a millimeter. What happens if you try to make an optical coating thicker
than this?

C  Suppose you take two microscope slides and lay one on top of the
other so that one of its edges is resting on the corresponding edge of the
bottom one. If you insert a sliver of paper or a hair at the opposite end,
a wedge-shaped layer of air will exist in the middle, with a thickness that
changes gradually from one end to the other. What would you expect to
see if the slides were illuminated from above by light of a single color?
How would this change if you gradually lifted the lower edge of the top
slide until the two slides were finally parallel?

D Anobservation like the one described in discussion question C was
used by Newton as evidence against the wave theory of light! If Newton
didn’t know about inverting and noninverting reflections, what would have
seemed inexplicable to him about the region where the air layer had zero
or nearly zero thickness?

Section 4.3
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p / A model of a guitar string.

g/ The motion of a pulse on
the string.
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r/A tricky way to double the
frequency.

4.4 Waves Bounded on Both Sides

In the examples discussed in section 4.3, it was theoretically true
that a pulse would be trapped permanently in the middle medium,
but that pulse was not central to our discussion, and in any case it
was weakening severely with each partial reflection. Now consider
a guitar string. At its ends it is tied to the body of the instrument
itself, and since the body is very massive, the behavior of the waves
when they reach the end of the string can be understood in the same
way as if the actual guitar string was attached on the ends to strings
that were extremely massive, p. Reflections are most intense when
the two media are very dissimilar. Because the wave speed in the
body is so radically different from the speed in the string, we should
expect nearly 100% reflection.

Although this may seem like a rather bizarre physical model of
the actual guitar string, it already tells us something interesting
about the behavior of a guitar that we would not otherwise have
understood. The body, far from being a passive frame for attaching
the strings to, is actually the exit path for the wave energy in the
strings. With every reflection, the wave pattern on the string loses
a tiny fraction of its energy, which is then conducted through the
body and out into the air. (The string has too little cross-section to
make sound waves efficiently by itself.) By changing the properties
of the body, moreover, we should expect to have an effect on the
manner in which sound escapes from the instrument. This is clearly
demonstrated by the electric guitar, which has an extremely massive,
solid wooden body. Here the dissimilarity between the two wave
media is even more pronounced, with the result that wave energy
leaks out of the string even more slowly. This is why an electric
guitar with no electric pickup can hardly be heard at all, and it is
also the reason why notes on an electric guitar can be sustained for
longer than notes on an acoustic guitar.

If we initially create a disturbance on a guitar string, how will
the reflections behave? In reality, the finger or pick will give the
string a triangular shape before letting it go, and we may think of
this triangular shape as a very broad “dent” in the string which
will spread out in both directions. For simplicity, however, let’s just
imagine a wave pattern that initially consists of a single, narrow
pulse traveling up the neck, q/1. After reflection from the top end,
it is inverted, 3. Now something interesting happens: figure 5 is
identical to figure 1. After two reflections, the pulse has been in-
verted twice and has changed direction twice. It is now back where
it started. The motion is periodic. This is why a guitar produces
sounds that have a definite sensation of pitch.

self-check E
Notice that from g/1 to g/5, the pulse has passed by every point on the
string exactly twice. This means that the total distance it has traveled
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equals 2L, where L is the length of the string. Given this fact, what are
the period and frequency of the sound it produces, expressed in terms
of L and v, the velocity of the wave? > Answer, p. 99

Note that if the waves on the string obey the principle of super-
position, then the velocity must be independent of amplitude, and
the guitar will produce the same pitch regardless of whether it is
played loudly or softly. In reality, waves on a string obey the prin-
ciple of superposition approximately, but not exactly. The guitar,
like just about any acoustic instrument, is a little out of tune when
played loudly. (The effect is more pronounced for wind instruments
than for strings, but wind players are able to compensate for it.)

Now there is only one hole in our reasoning. Suppose we some-
how arrange to have an initial setup consisting of two identical pulses
heading toward each other, as in figure r. They will pass through
each other, undergo a single inverting reflection, and come back to
a configuration in which their positions have been exactly inter-
changed. This means that the period of vibration is half as long.
The frequency is twice as high.

This might seem like a purely academic possibility, since nobody
actually plays the guitar with two picks at once! But in fact it is an
example of a very general fact about waves that are bounded on both
sides. A mathematical theorem called Fourier’s theorem states that
any wave can be created by superposing sine waves. Figure s shows
how even by using only four sine waves with appropriately chosen
amplitudes, we can arrive at a sum which is a decent approximation
to the realistic triangular shape of a guitar string being plucked.
The one-hump wave, in which half a wavelength fits on the string,
will behave like the single pulse we originally discussed. We call
its frequency f,. The two-hump wave, with one whole wavelength,
is very much like the two-pulse example. For the reasons discussed
above, its frequency is 2 f,. Similarly, the three-hump and four-hump
waves have frequencies of 3f, and 4f,.

Theoretically we would need to add together infinitely many
such wave patterns to describe the initial triangular shape of the
string exactly, although the amplitudes required for the very high
frequency parts would be very small, and an excellent approximation
could be achieved with as few as ten waves.

We thus arrive at the following very general conclusion. When-
ever a wave pattern exists in a medium bounded on both sides by
media in which the wave speed is very different, the motion can be
broken down into the motion of a (theoretically infinite) series of sine
waves, with frequencies fo, 2f,, 3fo, ... Except for some technical
details, to be discussed below, this analysis applies to a vast range of
sound-producing systems, including the air column within the hu-
man vocal tract. Because sounds composed of this kind of pattern
of frequencies are so common, our ear-brain system has evolved so
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s/ Using the sum of four sine
waves to approximate the trian-
gular initial shape of a plucked

guitar string.
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t/Graphs of loudness ver-
sus frequency for the vowel “ah,”
sung as three different musical
notes. G is consonant with D,
since every overtone of G that is
close to an overtone of D (*) is at
exactly the same frequency. G
and C# are dissonant together,
since some of the overtones of G
(x) are close to, but not right on
top of, those of C#.

as to perceive them as a single, fused sensation of tone.

Musical applications

Many musicians claim to be able to pick out by ear several of the
frequencies 2f,, 3f,, ..., called overtones or harmonics of the funda-
mental f,, but they are kidding themselves. In reality, the overtone
series has two important roles in music, neither of which depends
on this fictitious ability to “hear out” the individual overtones.

First, the relative strengths of the overtones is an important
part of the personality of a sound, called its timbre (rhymes with
“amber”). The characteristic tone of the brass instruments, for ex-
ample, is a sound that starts out with a very strong harmonic series
extending up to very high frequencies, but whose higher harmonics
die down drastically as the attack changes to the sustained portion
of the note.

Second, although the ear cannot separate the individual harmon-
ics of a single musical tone, it is very sensitive to clashes between
the overtones of notes played simultaneously, i.e., in harmony. We
tend to perceive a combination of notes as being dissonant if they
have overtones that are close but not the same. Roughly speaking,
strong overtones whose frequencies differ by more than 1% and less
than 10% cause the notes to sound dissonant. It is important to
realize that the term “dissonance” is not a negative one in music.
No matter how long you search the radio dial, you will never hear
more than three seconds of music without at least one dissonant
combination of notes. Dissonance is a necessary ingredient in the
creation of a musical cycle of tension and release. Musically knowl-
edgeable people don’t use the word “dissonant” as a criticism of
music, although dissonance can be used in a clumsy way, or without
providing any contrast between dissonance and consonance.

Standing waves

Figure u shows sinusoidal wave patterns made by shaking a rope.
I used to enjoy doing this at the bank with the pens on chains, back
in the days when people actually went to the bank. You might think
that I and the person in the photos had to practice for a long time
in order to get such nice sine waves. In fact, a sine wave is the only
shape that can create this kind of wave pattern, called a standing
wave, which simply vibrates back and forth in one place without
moving. The sine wave just creates itself automatically when you
find the right frequency, because no other shape is possible.

If you think about it, it’s not even obvious that sine waves should
be able to do this trick. After all, waves are supposed to travel at a
set speed, aren’t they? The speed isn’t supposed to be zero! Well, we
can actually think of a standing wave as a superposition of a moving
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u / Standing waves on a spring.

sine wave with its own reflection, which is moving the opposite way.
Sine waves have the unique mathematical property, v, that the sum
of sine waves of equal wavelength is simply a new sine wave with
the same wavelength. As the two sine waves go back and forth, they
always cancel perfectly at the ends, and their sum appears to stand

still.

Standing wave patterns are rather important, since atoms are
really standing-wave patterns of electron waves. You are a standing

wave!

Harmonics on string instruments example 7
Figure w shows a violist playing what string players refer to as a
natural harmonic. The term “harmonic” is used here in a some-
what different sense than in physics. The musician’s pinkie is
pressing very lightly against the string — not hard enough to
make it touch the fingerboard — at a point precisely at the center
of the string’s length. As shown in the diagram, this allows the
string to vibrate at frequencies 2f,, 4f,, 61, ..., which have sta-
tionary points at the center of the string, but not at the odd mul-
tiples f,, 31y, .... Since all the overtones are multiples of 2f,, the
ear perceives 2f, as the basic frequency of the note. In musical
terms, doubling the frequency corresponds to raising the pitch by
an octave. The technique can be used in order to make it easier
to play high notes in rapid passages, or for its own sake, because
of the change in timbre.

v/Sine waves add to make
sine waves. Other functions don’t
have this property.

w / Example 7.
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y/ Graphs of excess density
versus position for the lowest-
frequency standing waves of
three types of air columns. Points
on the axis have normal air
density.

Standing-wave patterns of air columns

The air column inside a wind instrument behaves very much
like the wave-on-a-string example we’ve been concentrating on so
far, the main difference being that we may have either inverting or
noninverting reflections at the ends.

Some organ pipes are closed at both ends. The speed of sound
is different in metal than in air, so there is a strong reflection at
the closed ends, and we can have standing waves. These reflections
are both density-noninverting, so we get symmetric standing-wave
patterns, such as the one shown in figure y/1.

Figure x shows the sound waves in and around a bamboo Japanese
flute called a shakuhachi, which is open at both ends of the air col-
umn. We can only have a standing wave pattern if there are re-
flections at the ends, but that is very counterintuitive — why is
there any reflection at all, if the sound wave is free to emerge into
open space, and there is no change in medium? Recall the reason
why we got reflections at a change in medium: because the wave-
length changes, so the wave has to readjust itself from one pattern
to another, and the only way it can do that without developing a
kink is if there is a reflection. Something similar is happening here.
The only difference is that the wave is adjusting from being a plane
wave to being a spherical wave. The reflections at the open ends
are density-inverting, y/2, so the wave pattern is pinched off at the
ends. Comparing panels 1 and 2 of the figure, we see that although
the wave pattens are different, in both cases the wavelength is the
same: in the lowest-frequency standing wave, half a wavelength fits
inside the tube. Thus, it isn’t necessary to memorize which type of
reflection is inverting and which is inverting. It’s only necessary to
know that the tubes are symmetric.

Finally, we can have an asymmetric tube: closed at one end and
open at the other. A common example is the pan pipes, z, which are
closed at the bottom and open at the top. The standing wave with
the lowest frequency is therefore one in which 1/4 of a wavelength
fits along the length of the tube, as shown in figure y/3.

Sometimes an instrument’s physical appearance can be mislead-
ing. A concert flute, aa, is closed at the mouth end and open at
the other, so we would expect it to behave like an asymmetric air
column; in reality, it behaves like a symmetric air column open at
both ends, because the embouchure hole (the hole the player blows
over) acts like an open end. The clarinet and the saxophone look
similar, having a moutpiece and reed at one end and an open end
at the other, but they act different. In fact the clarinet’s air col-
umn has patterns of vibration that are asymmetric, the saxophone
symmetric. The discrepancy comes from the difference between the
conical tube of the sax and the cylindrical tube of the clarinet. The
adjustment of the wave pattern from a plane wave to a spherical
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wave is more gradual at the flaring bell of the saxophone.

self-check F

Draw a graph of pressure versus position for the first overtone of the air
column in a tube open at one end and closed at the other. This will be
the next-to-longest possible wavelength that allows for a point of maxi-
mum vibration at one end and a point of no vibration at the other. How
many times shorter will its wavelength be compared to the wavelength
of the lowest-frequency standing wave, shown in the figure? Based on
this, how many times greater will its frequency be? > Answer, p. 99

z/A pan pipe is an asym-
metric air column, open at the top
and closed at the bottom.

aa/A concert flute looks like
an asymmetric air column, open
at the mouth end and closed at
the other. However, its patterns of
vibration are symmetric, because
the embouchure hole acts like an
open end.
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Summary

Selected Vocabulary

reflection . . . . . the bouncing back of part of a wave from a
boundary
transmission . . . the continuation of part of a wave through a
boundary
absorption . . .. the gradual conversion of wave energy into
heating of the medium
standing wave . . a wave pattern that stays in one place
Notation
Ao wavelength (Greek letter lambda)
Summary

Whenever a wave encounters the boundary between two media
in which its speeds are different, part of the wave is reflected and
part is transmitted. The reflection is always reversed front-to-back,
but may also be inverted in amplitude. Whether the reflection is
inverted depends on how the wave speeds in the two media compare,
e.g., a wave on a string is uninverted when it is reflected back into a
segment of string where its speed is lower. The greater the difference
in wave speed between the two media, the greater the fraction of
the wave energy that is reflected. Surprisingly, a wave in a dense
material like wood will be strongly reflected back into the wood at
a wood-air boundary.

A one-dimensional wave confined by highly reflective boundaries
on two sides will display motion which is periodic. For example, if
both reflections are inverting, the wave will have a period equal
to twice the time required to traverse the region, or to that time
divided by an integer. An important special case is a sinusoidal
wave; in this case, the wave forms a stationary pattern composed of
a superposition of sine waves moving in opposite direction.
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Problems
Key

V' A computerized answer check is available online.
|/ A problem that requires calculus.
* A difficult problem.

1 Light travels faster in warmer air. Use this fact to explain the
formation of a mirage appearing like the shiny surface of a pool of
water when there is a layer of hot air above a road. (For simplicity,
pretend that there is actually a sharp boundary between the hot
layer and the cooler layer above it.)

2 (a) Using the equations from optional section 4.2, compute
the amplitude of light that is reflected back into air at an air-water
interface, relative to the amplitude of the incident wave. The speeds
of light in air and water are 3.0 x 108 and 2.2 x 108 m/s, respectively.

(b) Find the energy of the reflected wave as a fraction of the incident
energy. [Hint: The answers to the two parts are not the same.]

v

3 A concert flute produces its lowest note, at about 262 Hz,
when half of a wavelength fits inside its tube. Compute the length
of the flute. > Answer, p. 99

4 (a) A good tenor saxophone player can play all of the fol-
lowing notes without changing her fingering, simply by altering the
tightness of her lips: Eb (150 Hz), Eb (300 Hz), Bb (450 Hz), and
Eb (600 Hz). How is this possible? (I'm not asking you to analyze
the coupling between the lips, the reed, the mouthpiece, and the air
column, which is very complicated.)

(b) Some saxophone players are known for their ability to use this
technique to play “freak notes,” i.e., notes above the normal range
of the instrument. Why isn’t it possible to play notes below the
normal range using this technique?

5 The table gives the frequencies of the notes that make up
the key of F major, starting from middle C and going up through
all seven notes. (a) Calculate the first four or five harmonics of C
and G, and determine whether these two notes will be consonant or
dissonant. (b) Do the same for C and Bb. [Hint: Remember that
harmonics that differ by about 1-10% cause dissonance.]

6 Brass and wind instruments go up in pitch as the musician
warms up. Suppose a particular trumpet’s frequency goes up by
1.2%. Let’s consider possible physical reasons for the change in
pitch. (a) Solids generally expand with increasing temperature, be-
cause the stronger random motion of the atoms tends to bump them
apart. Brass expands by 1.88 x 107> per degree C. Would this tend
to raise the pitch, or lower it? Estimate the size of the effect in
comparison with the observed change in frequency. (b) The speed
of sound in a gas is proportional to the square root of the absolute

261.6 Hz
293.7
329.6
349.2
392.0
440.0

b 466.2
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temperature, where zero absolute temperature is -273 degrees C. As
in part a, analyze the size and direction of the effect. (c) Determine
the change in temperature, in units of degrees C, that would account
for the observed effect.

7 Your exhaled breath contains about 4.5% carbon dioxide, and
is therefore more dense than fresh air by about 2.3%. By analogy
with the treatment of waves on a string in section 3.2, we expect
that the speed of sound will be inversely proportional to the square
root of the density of the gas. Calculate the effect on the frequency
produced by a wind instrument.

Chapter 4 Bounded Waves



Appendix 1: Exercises

Exercise 1A: Vibrations

Equipment:
e air track and carts of two different masses
e springs
e spring scales

spring
(o)) e (NS OIS ONND))

/ b “4

|_| air track

Place the cart on the air track and attach springs so that it can vibrate.

Try at least one moderate

1. Test whether the period of vibration depends on amplitude.
amplitude, for which the springs do not go slack, at least one amplitude that is large enough so
that they do go slack, and one amplitude that’s the very smallest you can possibly observe.

2. Try a cart with a different mass. Does the period change by the expected factor, based on

the equation 7' = 2m+/m/k?

3. Use a spring scale to pull the cart away from equilibrium, and make a graph of force versus

position. Is it linear? If so, what is its slope?

4. Test the equation T' = 2mw+/m/k numerically.
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Exercise 2A: Worksheet on Resonance

1. Compare the oscillator’s energies at A, B, C, and D.
A B C D

X

2. Compare the Q values of the two oscillators.

X X
\ \
\ \

3. Match the x-t graphs in #2 with the amplitude-frequency graphs below.

response response

AN

frequency frequency
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Appendix 2: Photo Credits

Except as specifically noted below or in a parenthetical credit in the caption of a figure, all the illustrations in
this book are under my own copyright, and are copyleft licensed under the same license as the rest of the book.

In some cases it’s clear from the date that the figure is public domain, but I don’t know the name of the artist
or photographer; I would be grateful to anyone who could help me to give proper credit. I have assumed that
images that come from U.S. government web pages are copyright-free, since products of federal agencies fall into
the public domain. I've included some public-domain paintings; photographic reproductions of them are not
copyrightable in the U.S. (Bridgeman Art Library, Ltd. v. Corel Corp., 36 F. Supp. 2d 191, S.D.N.Y. 1999).

When “PSSC Physics” is given as a credit, it indicates that the figure is from the first edition of the textbook
entitled Physics, by the Physical Science Study Committee. The early editions of these books never had their
copyrights renewed, and are now therefore in the public domain. There is also a blanket permission given in
the later PSSC College Physics edition, which states on the copyright page that “The materials taken from the
original and second editions and the Advanced Topics of PSSC PHYSICS included in this text will be available
to all publishers for use in English after December 31, 1970, and in translations after December 31, 1975.”

Credits to Millikan and Gale refer to the textbooks Practical Physics (1920) and Elements of Physics (1927).
Both are public domain. (The 1927 version did not have its copyright renewed.) Since is possible that some of
the illustrations in the 1927 version had their copyrights renewed and are still under copyright, I have only used
them when it was clear that they were originally taken from public domain sources.

In a few cases, I have made use of images under the fair use doctrine. However, I am not a lawyer, and the laws
on fair use are vague, so you should not assume that it’s legal for you to use these images. In particular, fair use
law may give you less leeway than it gives me, because I'm using the images for educational purposes, and giving
the book away for free. Likewise, if the photo credit says “courtesy of ...,” that means the copyright owner gave
me permission to use it, but that doesn’t mean you have permission to use it.

Contents Bridge, MRI, surfer, z-ray, galaxy: see below. 13 FElectric bass: Brynjar Vik, CC-BY license. 20
Jupiter: Uncopyrighted image from the Voyager probe. Line art by the author. 25 Tacoma Narrows Bridge:
Public domain, from Stillman Fires Collection: Tacoma Fire Dept, www.archive.org. 33 Nimitz Freeway:
Unknown photographer, courtesy of the UC Berkeley Earth Sciences and Map Library. 37 Two-dimensional
MRI: ITmage of the author’s wife. 37 Three-dimensional brain: R. Malladi, LBNL. 44 Spider oscillations:
Emile, Le Floch, and Vollrath, Nature 440:621 (2006). 47 Painting of waves: Katsushika Hokusai (1760-1849),
public domain. 50 Superposition of pulses: Photo from PSSC Physics. 51 Marker on spring as pulse passes
by: PSSC Physics. 52 Surfing (hand drag): Stan Shebs, GFDL licensed (Wikimedia Commons). 62 Fetus:
Image of the author’s daughter. 52 Breaking wave: Ole Kils, olekils at web.de, GFDL licensed (Wikipedia).
61 Wavelengths of circular and linear waves: PSSC Physics. 61 Changing wavelength: PSSC Physics. 63
Doppler effect for water waves: PSSC Physics. 65 Doppler radar: Public domain image by NOAA, an agency of
the U.S. federal government. 66 M51 galaxy: public domain Hubble Space Telescope image, courtesy of NASA,
ESA, S. Beckwith (STSclI), and The Hubble Heritage Team (STScI/AURA). 67 Mount Wilson: Andrew Dunn,
cc-by-sa licensed. 68 X15: NASA, public domain. 68 Jet breaking the sound barrier: Public domain product
of the U.S. government, U.S. Navy photo by Ensign John Gay. 73 Human cross-section: Courtesy of the Visible
Human Project, National Library of Medicine, US NIH. 74 Reflection of fish: Jan Derk, Wikipedia user janderk,
public domain. 75 Reflection of circular waves: PSSC Physics. 75 Reflection of pulses: PSSC Physics. 76
Reflection of pulses: Photo from PSSC Physics. 78 X-ray image of hand: 1896 image produced by Roentgen.
84 Soap bubble: Wikimedia Commons, GFDL/CC-BY-SA, user Tagishsimon. 86 Photo of guitar: Wikimedia
Commons, dedicated to the public domain by user Tsca. 89 Standing waves: PSSC Physics. 82 Traffic:
Wikipedia user Diliff, CC-BY licensed. 91 Pan pipes: Wikipedia user Andrew Dunn, CC-BY-SA licensed. 91
Flute: Wikipedia user Grendelkhan, GFDL licensed.



Appendix 3: Hints and Solutions

Answers to Self-Checks
Answers to Self-Checks for Chapter 2

Page 28, self-check A: The horizontal axis is a time axis, and the period of the vibrations is
independent of amplitude. Shrinking the amplitude does not make the cyles and faster.

Page 29, self-check B: Energy is proportional to the square of the amplitude, so its energy is
four times smaller after every cycle. It loses three quarters of its energy with each cycle.

Page 35, self-check C: She should tap the wine glasses she finds in the store and look for one
with a high @), i.e., one whose vibrations die out very slowly. The one with the highest Q) will
have the highest-amplitude response to her driving force, making it more likely to break.

Answers to Self-Checks for Chapter 3

Page 51, self-check A: The leading edge is moving up, the trailing edge is moving down, and
the top of the hump is motionless for one instant.

Answers to Self-Checks for Chapter 4

Page 75, self-check A: The energy of a wave is usually proportional to the square of its
amplitude. Squaring a negative number gives a positive result, so the energy is the same.

Page 75, self-check B: A substance is invisible to sonar if the speed of sound waves in it is
the same as in water. Reflections only occur at boundaries between media in which the wave
speed is different.

Page 77, self-check C: No. A material object that loses kinetic energy slows down, but a
wave is not a material object. The velocity of a wave ordinarily only depends on the medium,
not the amplitude. The speed of a soft sound, for example, is the same as the speed of a loud
sound.

Page 85, self-check D: 1. No. To get the best possible interference, the thickness of the
coating must be such that the second reflected wave train lags behind the first by an integer
number of wavelengths. Optimal performance can therefore only be produced for one specific
color of light. The typical greenish color of the coatings shows that they do the worst job for
green light.

2. Light can be reflected either from the outer surface of the film or from the inner surface, and
there can be either constructive or destructive interference between the two reflections. We see
a pattern that varies across the surface because its thickness isn’t constant. We see rainbow
colors because the condition for destructive or constructive interference depends on wavelength.



White light is a mixture of all the colors of the rainbow, and at a particular place on the soap
bubble, part of that mixture, say red, may be reflected strongly, while another part, blue for
example, is almost entirely transmitted.

Page 86, self-check E: The period is the time required to travel a distance 2L at speed v,
T =2L/v. The frequency is f =1/T = v/2L.

Page 91, self-check F: The wave pattern will look like this: ®< Three quarters of a
wavelength fit in the tube, so the wavelength is three times shorter than that of the lowest-
frequency mode, in which one quarter of a wave fits. Since the wavelength is smaller by a factor
of three, the frequency is three times higher. Instead of f,,2f,,3fs,4fo, - .., the pattern of wave
frequencies of this air column goes f,, 3fo, 5o, 7fo, - --

Answers to Selected Homework Problems
Solutions for Chapter 4

Page 93, problem 3: Check: The actual length of a flute is about 66 cm from the tip
of the mouthpiece to the end of the bell.
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Index

absorption of waves, 77
amplitude
defined, 16
peak-to-peak, 16
related to energy, 27

comet, 13

damping

defined, 28
decibel scale, 28
Doppler effect, 63
driving force, 31

eardrum, 31
Einstein, Albert, 14
energy
related to amplitude, 27
exponential decay
defined, 29

Fourier’s theorem, 87
frequency

defined, 15
fundamental, 88

Galileo, 19

Halley’s Comet, 13
harmonics, 88
Hooke’s law, 17

interference effects, 83
light, 57

motion
periodic, 15

overtones, 88

period
defined, 15
pitch, 13
principle of superposition, 49
pulse
defined, 49

quality factor
defined, 29

reflection of waves, 74
resonance

defined, 33

simple harmonic motion
defined, 18
period of, 18
sound, 57
speed of, 52
standing wave, 88
steady-state behavior, 31
swing, 30

timbre, 88
tuning fork, 17

work

done by a varying force, 14, 17, 19
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Useful Data

Metric Prefixes

M- mega-  10°

k- kilo- 10?

m- milli- 1073
p- (Greek mu)  micro- 107°
n- nano- 107°
p- pico- 1072
f- femto- 1071°

(Centi-, 102, is used only in the centimeter.)

The Greek Alphabet

a A alpha v N nu

8 B Dbeta & 2 0xi

v I' gamma | o O omicron
6 A delta o I pi

e E epsilon | p P rho

¢ Z zeta o X sigma
n H eta T T tau

0 © theta v Y upsilon
A | iota ¢ & phi

k K  kappa x X chi

A A lambda | v ¥ psi

s M mu w €  omega

Speeds of Light and
Sound

c=3.00 x 10° m/s
c=340 m/s

speed of light
speed of sound

Notation and Units

quantity

distance

time
mass
density
velocity

acceleration
gravitational field

force

pressure

energy
power

amplitude

period

frequency
wavelength
quality factor

FWHM

unit

meter, m

second, s
kilogram, kg
kg/m?

m/s

m/s”

J/kg-m or m/s?
newton, 1 N=1 kg-
1 Pa=1 N/m?
joule, J

watt, 1 W =1J/s
(varies)

S

Hz

m

unitless

Hz

Conversions

Nonmetric units in terms of metric ones:

= 25.4 mm (by definition)
= 4.5 newtons of force

1 inch

1 pound-force

(1kg)-g
1 scientific calorie

1 kcal
1 gallon

1 horsepower

= 2.2 pounds-force
=4.18J

=418 x 10° J

= 3.78 x 10% cm?
=746 W

m/s>

O>="HhromwHS ® <> 3

e

WHM

When speaking of food energy, the word “Calorie” is used

to mean 1 kcal, i.e., 1000 calories. In writing, the capital C

may be used to indicate 1 Calorie=1000 calories.

Relationships among U.S. units:

1 foot (ft) = 12 inches
i . 1 yard (yd) = 3 feet
Subatomic Particles L mile (mi) = 5280 feet

particle mass (kg)  radius (fm) Earth, Moon, and Sun

electron  9.109 x 1073* < 0.01

proton 1.673 x 10727 ~ 1.1

neutron  1.675 x 10727~ 1.1 . . .

body mass (kg) radius (km) radius of orbit (km)

The radii of protons and neutrons can only be given approx- earth 5.97 x 10%* 6.4 x 10° 1.49 x 108
imately, since they have fuzzy surfaces. For comparison, a moon 7.35 x 1022 1.7 x 103 3.84 x 10°
typical atom is about a million fm in radius. sun 1.99 x 103 7.0 x 10°
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